2022-02-19 17:33:41 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
2022-02-16 17:47:50 +00:00
|
|
|
import datetime
|
2022-03-07 04:27:14 +00:00
|
|
|
import math
|
2022-03-06 10:06:23 +00:00
|
|
|
import statistics
|
2022-02-26 18:52:08 +00:00
|
|
|
from typing import Iterable, List, Literal, Mapping, Union
|
2022-02-17 10:50:48 +00:00
|
|
|
|
|
|
|
from dateutil.relativedelta import relativedelta
|
2022-02-16 17:47:50 +00:00
|
|
|
|
2022-03-21 15:17:55 +00:00
|
|
|
from .core import AllFrequencies, Frequency, Series, TimeSeriesCore, date_parser
|
2022-03-11 04:11:35 +00:00
|
|
|
from .utils import (
|
|
|
|
FincalOptions,
|
|
|
|
_find_closest_date,
|
|
|
|
_interval_to_years,
|
|
|
|
_preprocess_match_options,
|
|
|
|
)
|
2022-02-17 16:57:22 +00:00
|
|
|
|
|
|
|
|
2022-03-05 17:53:31 +00:00
|
|
|
@date_parser(0, 1)
|
2022-02-17 16:57:22 +00:00
|
|
|
def create_date_series(
|
2022-02-26 18:52:08 +00:00
|
|
|
start_date: Union[str, datetime.datetime],
|
|
|
|
end_date: Union[str, datetime.datetime],
|
|
|
|
frequency: Literal["D", "W", "M", "Q", "H", "Y"],
|
|
|
|
eomonth: bool = False,
|
2022-03-11 04:11:35 +00:00
|
|
|
skip_weekends: bool = False,
|
2022-02-17 16:57:22 +00:00
|
|
|
) -> List[datetime.datetime]:
|
2022-02-26 18:52:08 +00:00
|
|
|
"""Create a date series with a specified frequency
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
start_date : str | datetime.datetime
|
|
|
|
Date series will always start at this date
|
|
|
|
|
|
|
|
end_date : str | datetime.datetime
|
|
|
|
The date till which the series should extend
|
|
|
|
Depending on the other parameters, this date may or may not be present
|
|
|
|
in the final date series
|
|
|
|
|
|
|
|
frequency : D | W | M | Q | H | Y
|
|
|
|
Frequency of the date series.
|
|
|
|
The gap between each successive date will be equivalent to this frequency
|
|
|
|
|
|
|
|
eomonth : bool, optional
|
|
|
|
Speacifies if the dates in the series should be end of month dates.
|
|
|
|
Can only be used if the frequency is Monthly or lower.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
List[datetime.datetime]
|
|
|
|
Returns the series as a list of datetime objects
|
|
|
|
|
|
|
|
Raises
|
|
|
|
------
|
|
|
|
ValueError
|
|
|
|
If eomonth is True and frequency is higher than monthly
|
|
|
|
"""
|
2022-02-17 16:57:22 +00:00
|
|
|
|
2022-02-20 10:37:50 +00:00
|
|
|
frequency = getattr(AllFrequencies, frequency)
|
2022-02-19 17:33:41 +00:00
|
|
|
if eomonth and frequency.days < AllFrequencies.M.days:
|
|
|
|
raise ValueError(f"eomonth cannot be set to True if frequency is higher than {AllFrequencies.M.name}")
|
|
|
|
|
|
|
|
datediff = (end_date - start_date).days / frequency.days + 1
|
2022-02-17 16:57:22 +00:00
|
|
|
dates = []
|
|
|
|
|
|
|
|
for i in range(0, int(datediff)):
|
2022-02-19 17:33:41 +00:00
|
|
|
diff = {frequency.freq_type: frequency.value * i}
|
|
|
|
date = start_date + relativedelta(**diff)
|
2022-02-26 17:15:39 +00:00
|
|
|
|
2022-02-19 17:33:41 +00:00
|
|
|
if eomonth:
|
2022-02-26 17:15:39 +00:00
|
|
|
next_month = 1 if date.month == 12 else date.month + 1
|
|
|
|
date = date.replace(day=1).replace(month=next_month) - relativedelta(days=1)
|
|
|
|
|
2022-02-20 10:37:50 +00:00
|
|
|
if date <= end_date:
|
2022-03-11 04:11:35 +00:00
|
|
|
if frequency.days > 1 or not skip_weekends:
|
|
|
|
dates.append(date)
|
|
|
|
elif date.weekday() < 5:
|
|
|
|
dates.append(date)
|
2022-02-19 07:53:15 +00:00
|
|
|
|
2022-03-11 04:11:35 +00:00
|
|
|
return Series(dates, data_type="date")
|
2022-02-19 07:53:15 +00:00
|
|
|
|
|
|
|
|
|
|
|
class TimeSeries(TimeSeriesCore):
|
2022-02-26 18:52:08 +00:00
|
|
|
"""1-Dimensional Time Series object
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
data : List[Iterable] | Mapping
|
|
|
|
Time Series data in the form of list of tuples.
|
|
|
|
The first element of each tuple should be a date and second element should be a value.
|
|
|
|
The following types of objects can be passed to create a TimeSeries object:
|
|
|
|
* List of tuples containing date & value
|
|
|
|
* List of lists containing date & value
|
|
|
|
* List of dictionaries containing key: value pair of date and value
|
|
|
|
* List of dictionaries with 2 keys, first representing date & second representing value
|
|
|
|
* Dictionary of key: value pairs
|
|
|
|
|
|
|
|
date_format : str, optional, default "%Y-%m-%d"
|
|
|
|
Specify the format of the date
|
|
|
|
Required only if the first argument of tuples is a string. Otherwise ignored.
|
|
|
|
|
|
|
|
frequency : str, optional, default "infer"
|
|
|
|
The frequency of the time series. Default is infer.
|
|
|
|
The class will try to infer the frequency automatically and adjust to the closest member.
|
|
|
|
Note that inferring frequencies can fail if the data is too irregular.
|
|
|
|
Valid values are {D, W, M, Q, H, Y}
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
data: Union[List[Iterable], Mapping],
|
|
|
|
frequency: Literal["D", "W", "M", "Q", "H", "Y"],
|
|
|
|
date_format: str = "%Y-%m-%d",
|
|
|
|
):
|
|
|
|
"""Instantiate a TimeSeriesCore object"""
|
|
|
|
|
|
|
|
super().__init__(data, frequency, date_format)
|
2022-02-19 07:53:15 +00:00
|
|
|
|
2022-02-17 10:50:48 +00:00
|
|
|
def info(self):
|
|
|
|
"""Summary info about the TimeSeries object"""
|
|
|
|
|
2022-02-21 16:57:48 +00:00
|
|
|
total_dates = len(self.data.keys())
|
2022-02-17 10:50:48 +00:00
|
|
|
res_string = "First date: {}\nLast date: {}\nNumber of rows: {}"
|
|
|
|
return res_string.format(self.start_date, self.end_date, total_dates)
|
|
|
|
|
2022-02-19 17:33:41 +00:00
|
|
|
def ffill(self, inplace: bool = False, limit: int = None) -> Union[TimeSeries, None]:
|
|
|
|
"""Forward fill missing dates in the time series
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
inplace : bool
|
|
|
|
Modify the time-series data in place and return None.
|
|
|
|
|
|
|
|
limit : int, optional
|
|
|
|
Maximum number of periods to forward fill
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
Returns a TimeSeries object if inplace is False, otherwise None
|
|
|
|
"""
|
|
|
|
|
|
|
|
eomonth = True if self.frequency.days >= AllFrequencies.M.days else False
|
2022-02-20 10:37:50 +00:00
|
|
|
dates_to_fill = create_date_series(self.start_date, self.end_date, self.frequency.symbol, eomonth)
|
2022-02-17 10:50:48 +00:00
|
|
|
|
|
|
|
new_ts = dict()
|
2022-02-19 17:33:41 +00:00
|
|
|
for cur_date in dates_to_fill:
|
2022-02-17 10:50:48 +00:00
|
|
|
try:
|
2022-02-21 16:57:48 +00:00
|
|
|
cur_val = self.data[cur_date]
|
2022-02-17 10:50:48 +00:00
|
|
|
except KeyError:
|
|
|
|
pass
|
2022-02-18 15:47:04 +00:00
|
|
|
new_ts.update({cur_date: cur_val})
|
2022-02-17 10:50:48 +00:00
|
|
|
|
|
|
|
if inplace:
|
2022-02-21 16:57:48 +00:00
|
|
|
self.data = new_ts
|
2022-02-17 10:50:48 +00:00
|
|
|
return None
|
|
|
|
|
2022-02-21 17:18:24 +00:00
|
|
|
return self.__class__(new_ts, frequency=self.frequency.symbol)
|
2022-02-17 10:50:48 +00:00
|
|
|
|
2022-02-20 12:49:34 +00:00
|
|
|
def bfill(self, inplace: bool = False, limit: int = None) -> Union[TimeSeries, None]:
|
|
|
|
"""Backward fill missing dates in the time series
|
2022-02-17 10:50:48 +00:00
|
|
|
|
2022-02-20 12:49:34 +00:00
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
inplace : bool
|
|
|
|
Modify the time-series data in place and return None.
|
|
|
|
|
|
|
|
limit : int, optional
|
|
|
|
Maximum number of periods to back fill
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
Returns a TimeSeries object if inplace is False, otherwise None
|
|
|
|
"""
|
|
|
|
|
|
|
|
eomonth = True if self.frequency.days >= AllFrequencies.M.days else False
|
|
|
|
dates_to_fill = create_date_series(self.start_date, self.end_date, self.frequency.symbol, eomonth)
|
|
|
|
dates_to_fill.append(self.end_date)
|
|
|
|
|
|
|
|
bfill_ts = dict()
|
|
|
|
for cur_date in reversed(dates_to_fill):
|
2022-02-17 10:50:48 +00:00
|
|
|
try:
|
2022-02-21 16:57:48 +00:00
|
|
|
cur_val = self.data[cur_date]
|
2022-02-17 10:50:48 +00:00
|
|
|
except KeyError:
|
|
|
|
pass
|
2022-02-20 12:49:34 +00:00
|
|
|
bfill_ts.update({cur_date: cur_val})
|
|
|
|
new_ts = {k: bfill_ts[k] for k in reversed(bfill_ts)}
|
2022-02-17 10:50:48 +00:00
|
|
|
if inplace:
|
2022-02-21 16:57:48 +00:00
|
|
|
self.data = new_ts
|
2022-02-17 10:50:48 +00:00
|
|
|
return None
|
|
|
|
|
2022-02-21 17:18:24 +00:00
|
|
|
return self.__class__(new_ts, frequency=self.frequency.symbol)
|
2022-02-16 17:47:50 +00:00
|
|
|
|
2022-03-01 10:04:16 +00:00
|
|
|
@date_parser(1)
|
2022-02-16 17:47:50 +00:00
|
|
|
def calculate_returns(
|
2022-02-19 07:53:15 +00:00
|
|
|
self,
|
2022-02-21 07:41:19 +00:00
|
|
|
as_on: Union[str, datetime.datetime],
|
2022-02-25 05:08:20 +00:00
|
|
|
return_actual_date: bool = True,
|
2022-02-19 17:33:41 +00:00
|
|
|
as_on_match: str = "closest",
|
|
|
|
prior_match: str = "closest",
|
2022-02-26 17:15:39 +00:00
|
|
|
closest: Literal["previous", "next", "exact"] = "previous",
|
2022-02-26 16:48:10 +00:00
|
|
|
closest_max_days: int = -1,
|
2022-02-26 17:15:39 +00:00
|
|
|
if_not_found: Literal["fail", "nan"] = "fail",
|
2022-03-07 04:27:14 +00:00
|
|
|
annual_compounded_returns: bool = True,
|
2022-03-13 08:58:08 +00:00
|
|
|
return_period_unit: Literal["years", "months", "days"] = "years",
|
|
|
|
return_period_value: int = 1,
|
2022-02-26 16:48:10 +00:00
|
|
|
date_format: str = None,
|
2022-02-18 15:47:04 +00:00
|
|
|
) -> float:
|
2022-02-16 17:47:50 +00:00
|
|
|
"""Method to calculate returns for a certain time-period as on a particular date
|
2022-02-19 07:53:15 +00:00
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
as_on : datetime.datetime
|
|
|
|
The date as on which the return is to be calculated.
|
|
|
|
|
2022-02-25 05:08:20 +00:00
|
|
|
return_actual_date : bool, default True
|
|
|
|
If true, the output will contain the actual date based on which the return was calculated.
|
|
|
|
Set to False to return the date passed in the as_on argument.
|
|
|
|
|
2022-02-19 07:53:15 +00:00
|
|
|
as_on_match : str, optional
|
|
|
|
The mode of matching the as_on_date. Refer closest.
|
|
|
|
|
|
|
|
prior_match : str, optional
|
|
|
|
The mode of matching the prior_date. Refer closest.
|
|
|
|
|
|
|
|
closest : str, optional
|
|
|
|
The mode of matching the closest date.
|
|
|
|
Valid values are 'exact', 'previous', 'next' and next.
|
|
|
|
|
2022-02-26 18:52:08 +00:00
|
|
|
closest_max_days: int, default -1
|
|
|
|
The maximum acceptable gap between the provided date arguments and actual date.
|
|
|
|
Pass -1 for no limit.
|
|
|
|
Note: There's a hard max limit of 1000 days due to Python's limits on recursion.
|
|
|
|
This can be overridden by importing the sys module.
|
|
|
|
|
2022-02-25 05:08:20 +00:00
|
|
|
if_not_found : 'fail' | 'nan'
|
|
|
|
What to do when required date is not found:
|
|
|
|
* fail: Raise a ValueError
|
|
|
|
* nan: Return nan as the value
|
|
|
|
|
2022-02-19 07:53:15 +00:00
|
|
|
compounding : bool, optional
|
|
|
|
Whether the return should be compounded annually.
|
|
|
|
|
2022-03-13 08:58:08 +00:00
|
|
|
return_period_unit : 'years', 'months', 'days'
|
2022-02-25 05:08:20 +00:00
|
|
|
The type of time period to use for return calculation.
|
|
|
|
|
2022-03-13 08:58:08 +00:00
|
|
|
return_period_value : int
|
2022-02-25 05:08:20 +00:00
|
|
|
The value of the specified interval type over which returns needs to be calculated.
|
|
|
|
|
|
|
|
date_format: str
|
|
|
|
The date format to use for this operation.
|
|
|
|
Should be passed as a datetime library compatible string.
|
|
|
|
Sets the date format only for this operation. To set it globally, use FincalOptions.date_format
|
2022-02-19 07:53:15 +00:00
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
2022-02-25 05:08:20 +00:00
|
|
|
A tuple containing the date and float value of the returns.
|
2022-02-19 07:53:15 +00:00
|
|
|
|
|
|
|
Raises
|
|
|
|
------
|
|
|
|
ValueError
|
|
|
|
* If match mode for any of the dates is exact and the exact match is not found
|
|
|
|
* If the arguments passsed for closest, as_on_match, and prior_match are invalid
|
|
|
|
|
|
|
|
Example
|
|
|
|
--------
|
2022-02-17 10:50:48 +00:00
|
|
|
>>> calculate_returns(datetime.date(2020, 1, 1), years=1)
|
2022-02-26 18:52:08 +00:00
|
|
|
(datetime.datetime(2020, 1, 1, 0, 0), .0567)
|
2022-02-16 17:47:50 +00:00
|
|
|
"""
|
|
|
|
|
2022-02-19 07:53:15 +00:00
|
|
|
as_on_delta, prior_delta = _preprocess_match_options(as_on_match, prior_match, closest)
|
2022-02-17 10:50:48 +00:00
|
|
|
|
2022-03-13 08:58:08 +00:00
|
|
|
prev_date = as_on - relativedelta(**{return_period_unit: return_period_value})
|
2022-02-26 16:48:10 +00:00
|
|
|
current = _find_closest_date(self.data, as_on, closest_max_days, as_on_delta, if_not_found)
|
2022-03-02 18:05:57 +00:00
|
|
|
if current[1] != str("nan"):
|
|
|
|
previous = _find_closest_date(self.data, prev_date, closest_max_days, prior_delta, if_not_found)
|
2022-02-25 19:14:45 +00:00
|
|
|
|
2022-02-26 17:15:39 +00:00
|
|
|
if current[1] == str("nan") or previous[1] == str("nan"):
|
|
|
|
return as_on, float("NaN")
|
2022-02-25 19:14:45 +00:00
|
|
|
|
|
|
|
returns = current[1] / previous[1]
|
2022-03-07 04:27:14 +00:00
|
|
|
if annual_compounded_returns:
|
2022-03-13 08:58:08 +00:00
|
|
|
years = _interval_to_years(return_period_unit, return_period_value)
|
2022-02-17 10:50:48 +00:00
|
|
|
returns = returns ** (1 / years)
|
2022-02-25 19:14:45 +00:00
|
|
|
return (current[0] if return_actual_date else as_on), returns - 1
|
2022-02-16 17:47:50 +00:00
|
|
|
|
2022-03-01 10:04:16 +00:00
|
|
|
@date_parser(1, 2)
|
2022-02-16 17:47:50 +00:00
|
|
|
def calculate_rolling_returns(
|
|
|
|
self,
|
2022-02-21 07:41:19 +00:00
|
|
|
from_date: Union[datetime.date, str],
|
|
|
|
to_date: Union[datetime.date, str],
|
2022-02-26 18:52:08 +00:00
|
|
|
frequency: Literal["D", "W", "M", "Q", "H", "Y"] = None,
|
2022-02-19 17:33:41 +00:00
|
|
|
as_on_match: str = "closest",
|
|
|
|
prior_match: str = "closest",
|
2022-02-26 18:52:08 +00:00
|
|
|
closest: Literal["previous", "next", "exact"] = "previous",
|
2022-02-26 17:15:39 +00:00
|
|
|
if_not_found: Literal["fail", "nan"] = "fail",
|
2022-03-07 04:27:14 +00:00
|
|
|
annual_compounded_returns: bool = True,
|
2022-03-13 08:58:08 +00:00
|
|
|
return_period_unit: Literal["years", "months", "days"] = "years",
|
|
|
|
return_period_value: int = 1,
|
2022-02-26 17:15:39 +00:00
|
|
|
date_format: str = None,
|
2022-02-26 18:52:08 +00:00
|
|
|
) -> TimeSeries:
|
|
|
|
"""Calculate the returns on a rolling basis.
|
|
|
|
This is a wrapper function around the calculate_returns function.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
from_date : datetime.date | str
|
|
|
|
Start date for the return calculation.
|
|
|
|
|
|
|
|
to_date : datetime.date | str
|
|
|
|
End date for the returns calculation.
|
|
|
|
|
|
|
|
frequency : str, optional
|
|
|
|
Frequency at which the returns should be calcualated.
|
|
|
|
Valid values are {D, W, M, Q, H, Y}
|
|
|
|
|
|
|
|
as_on_match : str, optional
|
|
|
|
The match mode to be used for the as on date.
|
|
|
|
If not specified, the value for the closes parameter will be used.
|
|
|
|
|
|
|
|
prior_match : str, optional
|
|
|
|
The match mode to be used for the prior date, i.e., the date against which the return will be calculated.
|
|
|
|
If not specified, the value for the closes parameter will be used.
|
|
|
|
|
|
|
|
closest : previous | next | exact
|
|
|
|
The default match mode for dates.
|
|
|
|
* Previous: look for the immediate previous available date
|
|
|
|
* Next: look for the immediate next available date
|
|
|
|
* Exact: Only look for the exact date passed in the input
|
|
|
|
|
|
|
|
if_not_found : fail | nan
|
|
|
|
Specifies what should be done if the date is not found.
|
|
|
|
* fail: raise a DateNotFoundError.
|
|
|
|
* nan: return nan as the value.
|
|
|
|
Note, this will return float('NaN') and not 'nan' as string.
|
|
|
|
|
|
|
|
Note, this function will always raise an error if it is not possible to find a matching date.`
|
|
|
|
For instance, if the input date is before the starting of the first date of the time series,
|
|
|
|
but match mode is set to previous. A DateOutOfRangeError will be raised in such cases.
|
|
|
|
|
|
|
|
compounding : bool, optional
|
|
|
|
Should the returns be compounded annually.
|
|
|
|
|
2022-03-13 08:58:08 +00:00
|
|
|
return_period_unit : years | month | days
|
2022-02-26 18:52:08 +00:00
|
|
|
The interval for the return calculation.
|
|
|
|
|
2022-03-13 08:58:08 +00:00
|
|
|
return_period_value : int, optional
|
2022-02-26 18:52:08 +00:00
|
|
|
The value of the interval for return calculation.
|
|
|
|
|
|
|
|
date_format : str, optional
|
|
|
|
A datetime library compatible format string.
|
|
|
|
If not specified, will use the setting in FincalOptions.date_format.
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
Returs the rolling returns as a TimeSeries object.
|
|
|
|
|
|
|
|
Raises
|
|
|
|
------
|
|
|
|
ValueError
|
|
|
|
- If an invalid argument is passed for frequency parameter.
|
|
|
|
|
|
|
|
See also
|
|
|
|
--------
|
|
|
|
TimeSeries.calculate_returns
|
|
|
|
"""
|
2022-02-16 17:47:50 +00:00
|
|
|
|
2022-02-21 07:41:19 +00:00
|
|
|
if frequency is None:
|
|
|
|
frequency = self.frequency
|
|
|
|
else:
|
|
|
|
try:
|
|
|
|
frequency = getattr(AllFrequencies, frequency)
|
|
|
|
except AttributeError:
|
|
|
|
raise ValueError(f"Invalid argument for frequency {frequency}")
|
2022-02-20 03:49:43 +00:00
|
|
|
|
2022-02-21 02:57:01 +00:00
|
|
|
dates = create_date_series(from_date, to_date, frequency.symbol)
|
2022-02-19 07:53:15 +00:00
|
|
|
if frequency == AllFrequencies.D:
|
2022-02-21 16:57:48 +00:00
|
|
|
dates = [i for i in dates if i in self.data]
|
2022-02-16 17:47:50 +00:00
|
|
|
|
|
|
|
rolling_returns = []
|
|
|
|
for i in dates:
|
2022-02-19 17:33:41 +00:00
|
|
|
returns = self.calculate_returns(
|
|
|
|
as_on=i,
|
2022-03-07 04:27:14 +00:00
|
|
|
annual_compounded_returns=annual_compounded_returns,
|
2022-03-13 08:58:08 +00:00
|
|
|
return_period_unit=return_period_unit,
|
|
|
|
return_period_value=return_period_value,
|
2022-02-19 17:33:41 +00:00
|
|
|
as_on_match=as_on_match,
|
|
|
|
prior_match=prior_match,
|
|
|
|
closest=closest,
|
2022-02-26 17:15:39 +00:00
|
|
|
if_not_found=if_not_found,
|
2022-02-19 17:33:41 +00:00
|
|
|
)
|
2022-02-25 05:08:20 +00:00
|
|
|
rolling_returns.append(returns)
|
2022-02-20 03:49:43 +00:00
|
|
|
rolling_returns.sort()
|
2022-02-21 17:38:13 +00:00
|
|
|
return self.__class__(rolling_returns, self.frequency.symbol)
|
2022-02-17 16:57:22 +00:00
|
|
|
|
2022-03-07 04:27:14 +00:00
|
|
|
@date_parser(1, 2)
|
2022-03-06 10:06:23 +00:00
|
|
|
def volatility(
|
|
|
|
self,
|
2022-03-11 04:11:35 +00:00
|
|
|
from_date: Union[datetime.date, str] = None,
|
|
|
|
to_date: Union[datetime.date, str] = None,
|
2022-03-13 08:58:08 +00:00
|
|
|
annualize_volatility: bool = True,
|
|
|
|
traded_days: int = None,
|
2022-03-07 04:27:14 +00:00
|
|
|
frequency: Literal["D", "W", "M", "Q", "H", "Y"] = None,
|
2022-03-13 08:58:08 +00:00
|
|
|
return_period_unit: Literal["years", "months", "days"] = "days",
|
|
|
|
return_period_value: int = 1,
|
2022-03-07 04:27:14 +00:00
|
|
|
as_on_match: str = "closest",
|
|
|
|
prior_match: str = "closest",
|
|
|
|
closest: Literal["previous", "next", "exact"] = "previous",
|
|
|
|
if_not_found: Literal["fail", "nan"] = "fail",
|
|
|
|
annual_compounded_returns: bool = None,
|
|
|
|
date_format: str = None,
|
2022-03-13 17:22:23 +00:00
|
|
|
) -> float:
|
2022-03-06 10:06:23 +00:00
|
|
|
"""Calculates the volatility of the time series.add()
|
|
|
|
|
|
|
|
The volatility is calculated as the standard deviaion of periodic returns.
|
|
|
|
The periodicity of returns is based on the periodicity of underlying data.
|
2022-03-13 08:58:08 +00:00
|
|
|
|
|
|
|
Parameters:
|
|
|
|
----------
|
|
|
|
from_date: datetime.datetime | str, optional
|
|
|
|
Starting date for the volatility calculation.
|
|
|
|
Default is the first date on which volatility can be calculated based on the interval type.
|
|
|
|
|
|
|
|
to_date: datetime.datetime | str, optional
|
|
|
|
Ending date for the volatility calculation.
|
|
|
|
Default is the last date in the TimeSeries.
|
|
|
|
|
|
|
|
annualize_volatility: bool, default True
|
|
|
|
Whether the volatility number should be annualized.
|
|
|
|
Multiplies the standard deviation with the square root of the number of periods in a year
|
|
|
|
|
|
|
|
traded_days: bool, optional
|
|
|
|
Number of traded days per year to be considered for annualizing volatility.
|
|
|
|
Only used when annualizing volatility for a time series with daily frequency.
|
|
|
|
If not provided, will use the value in FincalOptions.traded_days.
|
2022-03-13 17:22:23 +00:00
|
|
|
|
|
|
|
Remaining options are passed on to rolling_return function.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
-------
|
|
|
|
Returns the volatility number as float
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
-------
|
|
|
|
ValueError: If frequency string is outside valid values
|
|
|
|
|
|
|
|
Also see:
|
|
|
|
--------
|
|
|
|
TimeSeries.calculate_rolling_returns()
|
2022-03-06 10:06:23 +00:00
|
|
|
"""
|
2022-03-07 04:27:14 +00:00
|
|
|
|
|
|
|
if frequency is None:
|
|
|
|
frequency = self.frequency
|
|
|
|
else:
|
|
|
|
try:
|
|
|
|
frequency = getattr(AllFrequencies, frequency)
|
|
|
|
except AttributeError:
|
|
|
|
raise ValueError(f"Invalid argument for frequency {frequency}")
|
|
|
|
|
2022-03-11 04:11:35 +00:00
|
|
|
if from_date is None:
|
2022-03-13 08:58:08 +00:00
|
|
|
from_date = self.start_date + relativedelta(**{return_period_unit: return_period_value})
|
2022-03-11 04:11:35 +00:00
|
|
|
if to_date is None:
|
|
|
|
to_date = self.end_date
|
|
|
|
|
2022-03-07 04:27:14 +00:00
|
|
|
if annual_compounded_returns is None:
|
|
|
|
annual_compounded_returns = False if frequency.days <= 366 else True
|
|
|
|
|
2022-03-06 10:06:23 +00:00
|
|
|
rolling_returns = self.calculate_rolling_returns(
|
2022-03-07 04:27:14 +00:00
|
|
|
from_date=from_date,
|
|
|
|
to_date=to_date,
|
|
|
|
frequency=frequency.symbol,
|
|
|
|
as_on_match=as_on_match,
|
|
|
|
prior_match=prior_match,
|
|
|
|
closest=closest,
|
|
|
|
if_not_found=if_not_found,
|
|
|
|
annual_compounded_returns=annual_compounded_returns,
|
2022-03-13 08:58:08 +00:00
|
|
|
return_period_unit=return_period_unit,
|
|
|
|
return_period_value=return_period_value,
|
2022-03-06 10:06:23 +00:00
|
|
|
)
|
|
|
|
sd = statistics.stdev(rolling_returns.values)
|
2022-03-07 04:27:14 +00:00
|
|
|
if annualize_volatility:
|
2022-03-11 04:11:35 +00:00
|
|
|
if traded_days is None:
|
|
|
|
traded_days = FincalOptions.traded_days
|
|
|
|
|
2022-03-13 08:58:08 +00:00
|
|
|
if return_period_unit == "months":
|
2022-03-07 04:27:14 +00:00
|
|
|
sd *= math.sqrt(12)
|
2022-03-13 08:58:08 +00:00
|
|
|
elif return_period_unit == "days":
|
2022-03-11 04:11:35 +00:00
|
|
|
sd *= math.sqrt(traded_days)
|
2022-03-07 04:27:14 +00:00
|
|
|
|
2022-03-06 10:06:23 +00:00
|
|
|
return sd
|
|
|
|
|
2022-03-13 17:22:23 +00:00
|
|
|
def average_rolling_return(self, **kwargs) -> float:
|
|
|
|
"""Calculates the average rolling return for a given period
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
kwargs: parameters to be passed to the calculate_rolling_returns() function
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
float
|
|
|
|
returns the average rolling return for a given period
|
|
|
|
|
|
|
|
Also see:
|
|
|
|
---------
|
|
|
|
TimeSeries.calculate_rolling_returns()
|
|
|
|
"""
|
|
|
|
|
|
|
|
kwargs["return_period_unit"] = kwargs.get("return_period_unit", self.frequency.freq_type)
|
|
|
|
kwargs["return_period_value"] = kwargs.get("return_period_value", 1)
|
|
|
|
kwargs["to_date"] = kwargs.get("to_date", self.end_date)
|
|
|
|
|
|
|
|
if kwargs.get("from_date", None) is None:
|
|
|
|
start_date = self.start_date + relativedelta(
|
|
|
|
**{kwargs["return_period_unit"]: kwargs["return_period_value"]}
|
|
|
|
)
|
|
|
|
kwargs["from_date"] = start_date
|
|
|
|
|
|
|
|
rr = self.calculate_rolling_returns(**kwargs)
|
|
|
|
return statistics.mean(rr.values)
|
|
|
|
|
2022-03-14 18:24:54 +00:00
|
|
|
def max_drawdown(self):
|
|
|
|
max_val_dict = {}
|
|
|
|
|
|
|
|
prev_val = 0
|
|
|
|
prev_date = list(self.data)[0]
|
|
|
|
|
|
|
|
for dt, val in self.data.items():
|
|
|
|
if val > prev_val:
|
|
|
|
max_val_dict[dt] = (dt, val, 0)
|
|
|
|
prev_date, prev_val = dt, val
|
|
|
|
else:
|
|
|
|
max_val_dict[dt] = (prev_date, prev_val, val / prev_val - 1)
|
|
|
|
|
|
|
|
max_drawdown = min(max_val_dict.items(), key=lambda x: x[1][2])
|
|
|
|
max_drawdown = dict(start_date=max_drawdown[1][0], end_date=max_drawdown[0], drawdown=max_drawdown[1][2])
|
|
|
|
|
|
|
|
return max_drawdown
|
|
|
|
|
2022-03-21 15:17:55 +00:00
|
|
|
def expand(
|
|
|
|
self, to_frequency: Literal["D", "W", "M", "Q", "H"], method: Literal["ffill", "bfill", "interpolate"]
|
|
|
|
) -> TimeSeries:
|
|
|
|
try:
|
|
|
|
to_frequency: Frequency = getattr(AllFrequencies, to_frequency)
|
|
|
|
except AttributeError:
|
|
|
|
raise ValueError(f"Invalid argument for to_frequency {to_frequency}")
|
|
|
|
|
|
|
|
if to_frequency.days >= self.frequency.days:
|
|
|
|
raise ValueError("TimeSeries can be only expanded to a higher frequency")
|
|
|
|
|
|
|
|
new_dates = create_date_series(self.start_date, self.end_date, frequency=to_frequency.symbol)
|
|
|
|
new_ts: dict = {dt: self.data.get(dt, None) for dt in new_dates}
|
|
|
|
output_ts: TimeSeries = TimeSeries(new_ts, frequency=to_frequency.symbol)
|
|
|
|
|
|
|
|
if method == "ffill":
|
|
|
|
output_ts.ffill(inplace=True)
|
|
|
|
elif method == "bfill":
|
|
|
|
output_ts.bfill(inplace=True)
|
|
|
|
else:
|
|
|
|
raise NotImplementedError(f"Method {method} not implemented")
|
|
|
|
|
|
|
|
return output_ts
|
|
|
|
|
2022-02-17 16:57:22 +00:00
|
|
|
|
2022-02-19 17:33:41 +00:00
|
|
|
if __name__ == "__main__":
|
2022-02-17 16:57:22 +00:00
|
|
|
date_series = [
|
2022-02-25 19:14:45 +00:00
|
|
|
datetime.datetime(2020, 1, 11),
|
2022-02-17 16:57:22 +00:00
|
|
|
datetime.datetime(2020, 1, 12),
|
2022-02-25 19:14:45 +00:00
|
|
|
datetime.datetime(2020, 1, 13),
|
|
|
|
datetime.datetime(2020, 1, 14),
|
|
|
|
datetime.datetime(2020, 1, 17),
|
|
|
|
datetime.datetime(2020, 1, 18),
|
|
|
|
datetime.datetime(2020, 1, 19),
|
|
|
|
datetime.datetime(2020, 1, 20),
|
|
|
|
datetime.datetime(2020, 1, 22),
|
2022-02-17 16:57:22 +00:00
|
|
|
]
|