PyFacts/fincal/fincal.py

212 lines
6.6 KiB
Python
Raw Normal View History

from __future__ import annotations
import datetime
from typing import List, Union
2022-02-17 10:50:48 +00:00
from dateutil.relativedelta import relativedelta
from .core import AllFrequencies, Frequency, TimeSeriesCore, _preprocess_match_options
2022-02-17 16:57:22 +00:00
def create_date_series(
start_date: datetime.datetime, end_date: datetime.datetime, frequency: Frequency, eomonth: bool = False
2022-02-17 16:57:22 +00:00
) -> List[datetime.datetime]:
"""Creates a date series using a frequency"""
if eomonth and frequency.days < AllFrequencies.M.days:
raise ValueError(f"eomonth cannot be set to True if frequency is higher than {AllFrequencies.M.name}")
datediff = (end_date - start_date).days / frequency.days + 1
2022-02-17 16:57:22 +00:00
dates = []
for i in range(0, int(datediff)):
diff = {frequency.freq_type: frequency.value * i}
date = start_date + relativedelta(**diff)
if eomonth:
if date.month == 12:
date = date.replace(day=31)
else:
date = date.replace(day=1).replace(month=date.month+1) - relativedelta(days=1)
dates.append(date)
return dates
class TimeSeries(TimeSeriesCore):
"""Container for TimeSeries objects"""
2022-02-17 10:50:48 +00:00
def info(self):
"""Summary info about the TimeSeries object"""
total_dates = len(self.time_series.keys())
res_string = "First date: {}\nLast date: {}\nNumber of rows: {}"
return res_string.format(self.start_date, self.end_date, total_dates)
def ffill(self, inplace: bool = False, limit: int = None) -> Union[TimeSeries, None]:
"""Forward fill missing dates in the time series
Parameters
----------
inplace : bool
Modify the time-series data in place and return None.
limit : int, optional
Maximum number of periods to forward fill
Returns
-------
Returns a TimeSeries object if inplace is False, otherwise None
"""
eomonth = True if self.frequency.days >= AllFrequencies.M.days else False
dates_to_fill = create_date_series(self.start_date, self.end_date, self.frequency, eomonth)
2022-02-17 10:50:48 +00:00
new_ts = dict()
for cur_date in dates_to_fill:
2022-02-17 10:50:48 +00:00
try:
cur_val = self.time_series[cur_date]
except KeyError:
pass
new_ts.update({cur_date: cur_val})
2022-02-17 10:50:48 +00:00
if inplace:
self.time_series = new_ts
return None
return new_ts
def bfill(self, inplace=False):
num_days = (self.end_date - self.start_date).days + 1
new_ts = dict()
for i in range(num_days):
cur_date = self.end_date - datetime.timedelta(days=i)
try:
cur_val = self.time_series[cur_date]
except KeyError:
pass
new_ts.update({cur_date: cur_val})
2022-02-17 10:50:48 +00:00
if inplace:
self.time_series = new_ts
return None
return dict(reversed(new_ts.items()))
def calculate_returns(
self,
as_on: datetime.datetime,
as_on_match: str = "closest",
prior_match: str = "closest",
closest: str = "previous",
compounding: bool = True,
years: int = 1,
) -> float:
"""Method to calculate returns for a certain time-period as on a particular date
Parameters
----------
as_on : datetime.datetime
The date as on which the return is to be calculated.
as_on_match : str, optional
The mode of matching the as_on_date. Refer closest.
prior_match : str, optional
The mode of matching the prior_date. Refer closest.
closest : str, optional
The mode of matching the closest date.
Valid values are 'exact', 'previous', 'next' and next.
compounding : bool, optional
Whether the return should be compounded annually.
years : int, optional
number of years for which the returns should be calculated
Returns
-------
The float value of the returns.
Raises
------
ValueError
* If match mode for any of the dates is exact and the exact match is not found
* If the arguments passsed for closest, as_on_match, and prior_match are invalid
Example
--------
2022-02-17 10:50:48 +00:00
>>> calculate_returns(datetime.date(2020, 1, 1), years=1)
"""
as_on_delta, prior_delta = _preprocess_match_options(as_on_match, prior_match, closest)
while True:
current = self.time_series.get(as_on, None)
if current is not None:
break
elif not as_on_delta:
raise ValueError("As on date not found")
as_on += as_on_delta
2022-02-17 10:50:48 +00:00
prev_date = as_on - relativedelta(years=years)
2022-02-17 10:50:48 +00:00
while True:
previous = self.time_series.get(prev_date, None)
if previous is not None:
2022-02-17 10:50:48 +00:00
break
elif not prior_delta:
raise ValueError("Previous date not found")
prev_date += prior_delta
2022-02-17 10:50:48 +00:00
returns = current / previous
if compounding:
2022-02-17 10:50:48 +00:00
returns = returns ** (1 / years)
return returns - 1
def calculate_rolling_returns(
self,
from_date: datetime.date,
to_date: datetime.date,
2022-02-19 04:09:37 +00:00
frequency: str = "D",
as_on_match: str = "closest",
prior_match: str = "closest",
2022-02-17 10:50:48 +00:00
closest: str = "previous",
compounding: bool = True,
2022-02-17 10:50:48 +00:00
years: int = 1,
) -> List[tuple]:
"""Calculates the rolling return"""
all_dates = create_date_series(from_date, to_date, getattr(AllFrequencies, frequency))
dates = set(all_dates)
if frequency == AllFrequencies.D:
dates = all_dates.intersection(self.dates)
rolling_returns = []
for i in dates:
returns = self.calculate_returns(
as_on=i,
compounding=compounding,
years=years,
as_on_match=as_on_match,
prior_match=prior_match,
closest=closest,
)
rolling_returns.append((i, returns))
self.rolling_returns = rolling_returns
return self.rolling_returns
2022-02-17 16:57:22 +00:00
if __name__ == "__main__":
2022-02-17 16:57:22 +00:00
date_series = [
datetime.datetime(2020, 1, 1),
datetime.datetime(2020, 1, 2),
datetime.datetime(2020, 1, 3),
datetime.datetime(2020, 1, 4),
datetime.datetime(2020, 1, 7),
datetime.datetime(2020, 1, 8),
datetime.datetime(2020, 1, 9),
datetime.datetime(2020, 1, 10),
datetime.datetime(2020, 1, 12),
]