Setup package and tested with tox
This commit is contained in:
parent
c9ead1a561
commit
115e667bde
5
.gitignore
vendored
Normal file
5
.gitignore
vendored
Normal file
@ -0,0 +1,5 @@
|
||||
.tox
|
||||
.eggs
|
||||
.env
|
||||
*egg-info
|
||||
__pycache__
|
24
LICENSE
Normal file
24
LICENSE
Normal file
@ -0,0 +1,24 @@
|
||||
This is free and unencumbered software released into the public domain.
|
||||
|
||||
Anyone is free to copy, modify, publish, use, compile, sell, or
|
||||
distribute this software, either in source code form or as a compiled
|
||||
binary, for any purpose, commercial or non-commercial, and by any
|
||||
means.
|
||||
|
||||
In jurisdictions that recognize copyright laws, the author or authors
|
||||
of this software dedicate any and all copyright interest in the
|
||||
software to the public domain. We make this dedication for the benefit
|
||||
of the public at large and to the detriment of our heirs and
|
||||
successors. We intend this dedication to be an overt act of
|
||||
relinquishment in perpetuity of all present and future rights to this
|
||||
software under copyright law.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
||||
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
||||
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
||||
OTHER DEALINGS IN THE SOFTWARE.
|
||||
|
||||
For more information, please refer to <http://unlicense.org>
|
15
README.md
Normal file
15
README.md
Normal file
@ -0,0 +1,15 @@
|
||||
# Fincal
|
||||
This module simplified handling of time-series data
|
||||
|
||||
## The problem
|
||||
Time series data often have missing data points. These missing points mess things up when you are trying to do a comparison between two sections of a time series.
|
||||
|
||||
To make things worse, most libraries don't allow comparison based on dates. Month to Month and year to year comparisons become difficult as they cannot be translated into number of days. However, these are commonly used metrics while looking at financial data.
|
||||
|
||||
## The Solution
|
||||
Fincal aims to simplify things by allowing you to:
|
||||
* Compare time-series data based on dates
|
||||
* Easy way to work around missing dates by taking the closest data points
|
||||
* Completing series with missing data points using forward fill and backward fill
|
||||
|
||||
## Examples
|
1
fincal/__init__.py
Normal file
1
fincal/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from fincal import *
|
20
fincal/__main__.py
Normal file
20
fincal/__main__.py
Normal file
@ -0,0 +1,20 @@
|
||||
import sys
|
||||
|
||||
|
||||
def main(args=None):
|
||||
"""The main routine."""
|
||||
if args is None:
|
||||
args = sys.argv[1:]
|
||||
|
||||
print("This is the main routine.")
|
||||
print("It should do something interesting.")
|
||||
|
||||
print("This is the name of the script: ", sys.argv[0])
|
||||
print("Number of arguments: ", len(sys.argv))
|
||||
print("The arguments are: ", str(sys.argv))
|
||||
|
||||
# Do argument parsing here with argparse
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
191
fincal/fincal.py
191
fincal/fincal.py
@ -1,122 +1,159 @@
|
||||
import datetime
|
||||
import pandas as pd
|
||||
from typing import Union, Dict, List, Iterable, Any
|
||||
from typing import Any, Dict, Iterable, List, Union
|
||||
|
||||
from dateutil.relativedelta import relativedelta
|
||||
|
||||
|
||||
class TimeSeries:
|
||||
def __init__(
|
||||
self,
|
||||
data=List[tuple],
|
||||
date_format: str = '%Y-%m-%d',
|
||||
frequency='infer' # D, W, M, Q, H, Y
|
||||
):
|
||||
self.time_series = [(datetime.datetime.strptime(i[0], date_format), i[1]) for i in data]
|
||||
self.dates = {i[0] for i in self.time_series}
|
||||
"""Container for TimeSeries objects"""
|
||||
|
||||
def __init__(self, data: List[tuple], date_format: str = "%Y-%m-%d", frequency="infer"):
|
||||
"""Instantiate a TimeSeries object
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : List[tuple]
|
||||
Time Series data in the form of list of tuples.
|
||||
The first element of each tuple should be a date and second element should be a value.
|
||||
|
||||
date_format : str, optional, default "%Y-%m-%d"
|
||||
Specify the format of the date
|
||||
Required only if the first argument of tuples is a string. Otherwise ignored.
|
||||
|
||||
frequency : str, optional, default "infer"
|
||||
The frequency of the time series. Default is infer.
|
||||
The class will try to infer the frequency automatically and adjust to the closest member.
|
||||
Note that inferring frequencies can fail if the data is too irregular.
|
||||
Valid values are {D, W, M, Q, H, Y}
|
||||
"""
|
||||
|
||||
time_series = [(datetime.datetime.strptime(i[0], date_format), i[1]) for i in data]
|
||||
time_series.sort()
|
||||
self.time_series = dict(time_series)
|
||||
self.dates = set(list(self.time_series))
|
||||
if len(self.dates) != len(time_series):
|
||||
print("Warning: The input data contains duplicate dates which have been ignored.")
|
||||
self.start_date = list(self.time_series)[0]
|
||||
self.end_date = list(self.time_series)[-1]
|
||||
|
||||
# def infer_frequency(self):
|
||||
# sample_dates = [i[0] for i in self.time_series[:10]]
|
||||
# for i in sample_dates
|
||||
def __repr__(self):
|
||||
if len(self.time_series) > 6:
|
||||
printable_data_1 = self.time_series[:3]
|
||||
printable_data_2 = self.time_series[-3:]
|
||||
printable_data_1 = list(self.time_series)[:3]
|
||||
printable_data_2 = list(self.time_series)[-3:]
|
||||
printable_str = "TimeSeries([{}\n\t...\n\t{}])".format(
|
||||
',\n\t'.join([str(i) for i in printable_data_1]),
|
||||
',\n\t'.join([str(i) for i in printable_data_2])
|
||||
)
|
||||
',\n\t'.join([str({i: self.time_series[i]}) for i in printable_data_1]),
|
||||
',\n\t'.join([str({i: self.time_series[i]}) for i in printable_data_2])
|
||||
)
|
||||
else:
|
||||
printable_data = self.time_series
|
||||
printable_str = "TimeSeries([{}])".format(',\n\t'.join([str(i) for i in printable_data]))
|
||||
printable_str = "TimeSeries([{}])".format(',\n\t'.join(
|
||||
[str({i: self.time_series[i]}) for i in printable_data]))
|
||||
return printable_str
|
||||
|
||||
def __str__(self):
|
||||
if len(self.time_series) > 6:
|
||||
printable_data_1 = self.time_series[:3]
|
||||
printable_data_2 = self.time_series[-3:]
|
||||
printable_data_1 = list(self.time_series)[:3]
|
||||
printable_data_2 = list(self.time_series)[-3:]
|
||||
printable_str = "[{}\n ...\n {}]".format(
|
||||
',\n '.join([str(i) for i in printable_data_1]),
|
||||
',\n '.join([str(i) for i in printable_data_2])
|
||||
)
|
||||
',\n '.join([str({i: self.time_series[i]}) for i in printable_data_1]),
|
||||
',\n '.join([str({i: self.time_series[i]}) for i in printable_data_2])
|
||||
)
|
||||
else:
|
||||
printable_data = self.time_series
|
||||
printable_str = "[{}]".format(',\n '.join([str(i) for i in printable_data]))
|
||||
printable_str = "[{}]".format(',\n '.join([str({i: self.time_series[i]}) for i in printable_data]))
|
||||
return printable_str
|
||||
|
||||
def ffill(self):
|
||||
new_ts = []
|
||||
for dt, val in self.time_series:
|
||||
if dt == self.time_series[0][0]:
|
||||
new_ts.append((dt, val))
|
||||
else:
|
||||
diff = (dt - prev_date).days
|
||||
if diff != 1:
|
||||
for k in range(1, diff):
|
||||
new_ts.append((prev_date + datetime.timedelta(days=k), prev_val))
|
||||
new_ts.append((dt, val))
|
||||
prev_date = dt
|
||||
prev_val = val
|
||||
self.ffilled_time_series = new_ts
|
||||
return self.ffilled_time_series
|
||||
def info(self):
|
||||
"""Summary info about the TimeSeries object"""
|
||||
|
||||
def bfill(self):
|
||||
new_ts = []
|
||||
for dt, val in self.time_series[::-1]:
|
||||
if dt == self.time_series[-1][0]:
|
||||
new_ts.append((dt, val))
|
||||
else:
|
||||
diff = (prev_date - dt).days
|
||||
if diff != 1:
|
||||
for k in range(1, diff):
|
||||
new_ts.append((prev_date - datetime.timedelta(days=k), prev_val))
|
||||
new_ts.append((dt, val))
|
||||
prev_date = dt
|
||||
prev_val = val
|
||||
self.ffilled_time_series = new_ts[::-1]
|
||||
return self.ffilled_time_series
|
||||
total_dates = len(self.time_series.keys())
|
||||
res_string = "First date: {}\nLast date: {}\nNumber of rows: {}"
|
||||
return res_string.format(self.start_date, self.end_date, total_dates)
|
||||
|
||||
def ffill(self, inplace=False):
|
||||
num_days = (self.end_date - self.start_date).days + 1
|
||||
|
||||
new_ts = dict()
|
||||
for i in range(num_days):
|
||||
cur_date = self.start_date + datetime.timedelta(days=i)
|
||||
try:
|
||||
cur_val = self.time_series[cur_date]
|
||||
except KeyError:
|
||||
pass
|
||||
new_ts.update({cur_date: cur_val})
|
||||
|
||||
if inplace:
|
||||
self.time_series = new_ts
|
||||
return None
|
||||
|
||||
return new_ts
|
||||
|
||||
def bfill(self, inplace=False):
|
||||
num_days = (self.end_date - self.start_date).days + 1
|
||||
|
||||
new_ts = dict()
|
||||
for i in range(num_days):
|
||||
cur_date = self.end_date - datetime.timedelta(days=i)
|
||||
try:
|
||||
cur_val = self.time_series[cur_date]
|
||||
except KeyError:
|
||||
pass
|
||||
new_ts.update({cur_date: cur_val})
|
||||
|
||||
if inplace:
|
||||
self.time_series = new_ts
|
||||
return None
|
||||
|
||||
return dict(reversed(new_ts.items()))
|
||||
|
||||
def calculate_returns(
|
||||
self,
|
||||
as_on: datetime.date,
|
||||
closest: str = 'previous',
|
||||
compounding: bool = True,
|
||||
years: int = 1
|
||||
self, as_on: datetime.datetime, closest: str = "previous", compounding: bool = True, years: int = 1
|
||||
) -> int:
|
||||
"""Method to calculate returns for a certain time-period as on a particular date
|
||||
>>> calculate_returns(datetime.date(2020, 1, 1), years=1)
|
||||
>>> calculate_returns(datetime.date(2020, 1, 1), years=1)
|
||||
"""
|
||||
|
||||
current = [(dt, val) for dt, val in self.time_series if dt == as_on][0]
|
||||
if not current:
|
||||
try:
|
||||
current = self.time_series[as_on]
|
||||
except KeyError:
|
||||
raise ValueError("As on date not found")
|
||||
|
||||
prev_date = as_on.replace(year=as_on.year-years)
|
||||
if closest == 'previous':
|
||||
previous = [(dt, val) for dt, val in self.time_series if dt <= prev_date][-1]
|
||||
elif closest == 'next':
|
||||
previous = [(dt, val) for dt, val in self.time_series if dt >= prev_date][0]
|
||||
# print(current, previous)
|
||||
prev_date = as_on - relativedelta(years=years)
|
||||
if closest == "previous":
|
||||
delta = -1
|
||||
elif closest == "next":
|
||||
delta = 1
|
||||
else:
|
||||
raise ValueError(f"Invalid value for closes parameter: {closest}")
|
||||
|
||||
returns = current[1]/previous[1]
|
||||
while True:
|
||||
try:
|
||||
previous = self.time_series[prev_date]
|
||||
break
|
||||
except KeyError:
|
||||
prev_date = prev_date + relativedelta(days=delta)
|
||||
|
||||
returns = current / previous
|
||||
if compounding:
|
||||
returns = returns ** (1/years)
|
||||
returns = returns ** (1 / years)
|
||||
return returns - 1
|
||||
|
||||
def calculate_rolling_returns(
|
||||
self,
|
||||
from_date: datetime.date,
|
||||
to_date: datetime.date,
|
||||
frequency: str = 'd',
|
||||
closest: str = 'previous',
|
||||
frequency: str = "d",
|
||||
closest: str = "previous",
|
||||
compounding: bool = True,
|
||||
years: int = 1
|
||||
years: int = 1,
|
||||
) -> List[tuple]:
|
||||
"""Calculates the rolling return"""
|
||||
|
||||
datediff = (to_date - from_date).days
|
||||
dates = []
|
||||
all_dates = set()
|
||||
for i in range(datediff):
|
||||
if from_date + datetime.timedelta(days=i) in self.dates:
|
||||
dates.append(from_date + datetime.timedelta(days=i))
|
||||
all_dates.add(from_date + datetime.timedelta(days=i))
|
||||
dates = all_dates.intersection(self.dates)
|
||||
|
||||
rolling_returns = []
|
||||
for i in dates:
|
||||
|
22
setup.py
Normal file
22
setup.py
Normal file
@ -0,0 +1,22 @@
|
||||
from setuptools import find_packages, setup
|
||||
|
||||
license = open("LICENSE").read().strip()
|
||||
|
||||
setup(
|
||||
name="Fincal",
|
||||
version='0.0.1',
|
||||
license=license,
|
||||
author="Gourav Kumar",
|
||||
author_email="gouravkr@outlook.in",
|
||||
url="https://gouravkumar.com",
|
||||
description="A library which makes handling time series data easier",
|
||||
long_description=open("README.md").read().strip(),
|
||||
packages=find_packages(),
|
||||
install_requires=["python-dateutil"],
|
||||
test_suite="tests",
|
||||
entry_points={
|
||||
"console_scripts": [
|
||||
"fincal=fincal.__main__:main",
|
||||
]
|
||||
},
|
||||
)
|
0
tests/__init__.py
Normal file
0
tests/__init__.py
Normal file
21
tests/test_fincal.py
Normal file
21
tests/test_fincal.py
Normal file
@ -0,0 +1,21 @@
|
||||
|
||||
import unittest
|
||||
|
||||
from fincal.fincal import TimeSeries
|
||||
|
||||
|
||||
class TestFincal(unittest.TestCase):
|
||||
def test_ts(self):
|
||||
data = [
|
||||
('2020-01-01', 23),
|
||||
('2020-01-02', 24),
|
||||
('2020-01-03', 25),
|
||||
('2020-01-06', 26),
|
||||
('2020-01-07', 27),
|
||||
('2020-01-08', 28),
|
||||
('2020-01-10', 29),
|
||||
('2020-01-11', 30)
|
||||
]
|
||||
time_series = TimeSeries(data)
|
||||
time_series.ffill(inplace=True)
|
||||
self.assertEqual(len(time_series.time_series), 11)
|
Loading…
Reference in New Issue
Block a user