PyFacts/fincal/fincal.py

273 lines
9.5 KiB
Python
Raw Normal View History

from __future__ import annotations
import datetime
from typing import List, Literal, Union
2022-02-17 10:50:48 +00:00
from dateutil.relativedelta import relativedelta
from .core import AllFrequencies, TimeSeriesCore
from .utils import (
_find_closest_date,
_interval_to_years,
_parse_date,
_preprocess_match_options,
)
2022-02-17 16:57:22 +00:00
def create_date_series(
start_date: datetime.datetime, end_date: datetime.datetime, frequency: str, eomonth: bool = False
2022-02-17 16:57:22 +00:00
) -> List[datetime.datetime]:
"""Creates a date series using a frequency"""
frequency = getattr(AllFrequencies, frequency)
if eomonth and frequency.days < AllFrequencies.M.days:
raise ValueError(f"eomonth cannot be set to True if frequency is higher than {AllFrequencies.M.name}")
start_date = _parse_date(start_date)
end_date = _parse_date(end_date)
datediff = (end_date - start_date).days / frequency.days + 1
2022-02-17 16:57:22 +00:00
dates = []
for i in range(0, int(datediff)):
diff = {frequency.freq_type: frequency.value * i}
date = start_date + relativedelta(**diff)
2022-02-26 17:15:39 +00:00
if eomonth:
2022-02-26 17:15:39 +00:00
next_month = 1 if date.month == 12 else date.month + 1
date = date.replace(day=1).replace(month=next_month) - relativedelta(days=1)
if date <= end_date:
dates.append(date)
return dates
class TimeSeries(TimeSeriesCore):
"""Container for TimeSeries objects"""
2022-02-17 10:50:48 +00:00
def info(self):
"""Summary info about the TimeSeries object"""
total_dates = len(self.data.keys())
2022-02-17 10:50:48 +00:00
res_string = "First date: {}\nLast date: {}\nNumber of rows: {}"
return res_string.format(self.start_date, self.end_date, total_dates)
def ffill(self, inplace: bool = False, limit: int = None) -> Union[TimeSeries, None]:
"""Forward fill missing dates in the time series
Parameters
----------
inplace : bool
Modify the time-series data in place and return None.
limit : int, optional
Maximum number of periods to forward fill
Returns
-------
Returns a TimeSeries object if inplace is False, otherwise None
"""
eomonth = True if self.frequency.days >= AllFrequencies.M.days else False
dates_to_fill = create_date_series(self.start_date, self.end_date, self.frequency.symbol, eomonth)
2022-02-17 10:50:48 +00:00
new_ts = dict()
for cur_date in dates_to_fill:
2022-02-17 10:50:48 +00:00
try:
cur_val = self.data[cur_date]
2022-02-17 10:50:48 +00:00
except KeyError:
pass
new_ts.update({cur_date: cur_val})
2022-02-17 10:50:48 +00:00
if inplace:
self.data = new_ts
2022-02-17 10:50:48 +00:00
return None
return self.__class__(new_ts, frequency=self.frequency.symbol)
2022-02-17 10:50:48 +00:00
2022-02-20 12:49:34 +00:00
def bfill(self, inplace: bool = False, limit: int = None) -> Union[TimeSeries, None]:
"""Backward fill missing dates in the time series
2022-02-17 10:50:48 +00:00
2022-02-20 12:49:34 +00:00
Parameters
----------
inplace : bool
Modify the time-series data in place and return None.
limit : int, optional
Maximum number of periods to back fill
Returns
-------
Returns a TimeSeries object if inplace is False, otherwise None
"""
eomonth = True if self.frequency.days >= AllFrequencies.M.days else False
dates_to_fill = create_date_series(self.start_date, self.end_date, self.frequency.symbol, eomonth)
dates_to_fill.append(self.end_date)
bfill_ts = dict()
for cur_date in reversed(dates_to_fill):
2022-02-17 10:50:48 +00:00
try:
cur_val = self.data[cur_date]
2022-02-17 10:50:48 +00:00
except KeyError:
pass
2022-02-20 12:49:34 +00:00
bfill_ts.update({cur_date: cur_val})
new_ts = {k: bfill_ts[k] for k in reversed(bfill_ts)}
2022-02-17 10:50:48 +00:00
if inplace:
self.data = new_ts
2022-02-17 10:50:48 +00:00
return None
return self.__class__(new_ts, frequency=self.frequency.symbol)
def calculate_returns(
self,
as_on: Union[str, datetime.datetime],
return_actual_date: bool = True,
as_on_match: str = "closest",
prior_match: str = "closest",
2022-02-26 17:15:39 +00:00
closest: Literal["previous", "next", "exact"] = "previous",
closest_max_days: int = -1,
2022-02-26 17:15:39 +00:00
if_not_found: Literal["fail", "nan"] = "fail",
compounding: bool = True,
2022-02-26 17:15:39 +00:00
interval_type: Literal["years", "months", "days"] = "years",
interval_value: int = 1,
date_format: str = None,
) -> float:
"""Method to calculate returns for a certain time-period as on a particular date
Parameters
----------
as_on : datetime.datetime
The date as on which the return is to be calculated.
return_actual_date : bool, default True
If true, the output will contain the actual date based on which the return was calculated.
Set to False to return the date passed in the as_on argument.
as_on_match : str, optional
The mode of matching the as_on_date. Refer closest.
prior_match : str, optional
The mode of matching the prior_date. Refer closest.
closest : str, optional
The mode of matching the closest date.
Valid values are 'exact', 'previous', 'next' and next.
if_not_found : 'fail' | 'nan'
What to do when required date is not found:
* fail: Raise a ValueError
* nan: Return nan as the value
compounding : bool, optional
Whether the return should be compounded annually.
interval_type : 'years', 'months', 'days'
The type of time period to use for return calculation.
interval_value : int
The value of the specified interval type over which returns needs to be calculated.
date_format: str
The date format to use for this operation.
Should be passed as a datetime library compatible string.
Sets the date format only for this operation. To set it globally, use FincalOptions.date_format
closest_max_days: int, default -1
The maximum acceptable gap between the provided date arguments and actual date.
Pass -1 for no limit.
Note: There's a hard max limit of 1000 days due to Python's limits on recursion.
This can be overridden by importing the sys module.
Returns
-------
A tuple containing the date and float value of the returns.
Raises
------
ValueError
* If match mode for any of the dates is exact and the exact match is not found
* If the arguments passsed for closest, as_on_match, and prior_match are invalid
Example
--------
2022-02-17 10:50:48 +00:00
>>> calculate_returns(datetime.date(2020, 1, 1), years=1)
"""
as_on = _parse_date(as_on, date_format)
as_on_delta, prior_delta = _preprocess_match_options(as_on_match, prior_match, closest)
2022-02-17 10:50:48 +00:00
prev_date = as_on - relativedelta(**{interval_type: interval_value})
current = _find_closest_date(self.data, as_on, closest_max_days, as_on_delta, if_not_found)
previous = _find_closest_date(self.data, prev_date, closest_max_days, prior_delta, if_not_found)
2022-02-26 17:15:39 +00:00
if current[1] == str("nan") or previous[1] == str("nan"):
return as_on, float("NaN")
returns = current[1] / previous[1]
if compounding:
years = _interval_to_years(interval_type, interval_value)
2022-02-17 10:50:48 +00:00
returns = returns ** (1 / years)
return (current[0] if return_actual_date else as_on), returns - 1
def calculate_rolling_returns(
self,
from_date: Union[datetime.date, str],
to_date: Union[datetime.date, str],
frequency: str = None,
as_on_match: str = "closest",
prior_match: str = "closest",
2022-02-17 10:50:48 +00:00
closest: str = "previous",
2022-02-26 17:15:39 +00:00
if_not_found: Literal["fail", "nan"] = "fail",
compounding: bool = True,
2022-02-26 17:15:39 +00:00
interval_type: Literal["years", "months", "days"] = "years",
interval_value: int = 1,
2022-02-26 17:15:39 +00:00
date_format: str = None,
) -> List[tuple]:
"""Calculates the rolling return"""
from_date = _parse_date(from_date, date_format)
to_date = _parse_date(to_date, date_format)
if frequency is None:
frequency = self.frequency
else:
try:
frequency = getattr(AllFrequencies, frequency)
except AttributeError:
raise ValueError(f"Invalid argument for frequency {frequency}")
2022-02-20 03:49:43 +00:00
dates = create_date_series(from_date, to_date, frequency.symbol)
if frequency == AllFrequencies.D:
dates = [i for i in dates if i in self.data]
rolling_returns = []
for i in dates:
returns = self.calculate_returns(
as_on=i,
compounding=compounding,
interval_type=interval_type,
interval_value=interval_value,
as_on_match=as_on_match,
prior_match=prior_match,
closest=closest,
2022-02-26 17:15:39 +00:00
if_not_found=if_not_found,
)
rolling_returns.append(returns)
2022-02-20 03:49:43 +00:00
rolling_returns.sort()
return self.__class__(rolling_returns, self.frequency.symbol)
2022-02-17 16:57:22 +00:00
if __name__ == "__main__":
2022-02-17 16:57:22 +00:00
date_series = [
datetime.datetime(2020, 1, 11),
2022-02-17 16:57:22 +00:00
datetime.datetime(2020, 1, 12),
datetime.datetime(2020, 1, 13),
datetime.datetime(2020, 1, 14),
datetime.datetime(2020, 1, 17),
datetime.datetime(2020, 1, 18),
datetime.datetime(2020, 1, 19),
datetime.datetime(2020, 1, 20),
datetime.datetime(2020, 1, 22),
2022-02-17 16:57:22 +00:00
]