separated utility functions and exceptions in standalone files
This commit is contained in:
parent
ef2973a1d1
commit
7cac5cc307
116
fincal/core.py
116
fincal/core.py
@ -2,13 +2,9 @@ import datetime
|
||||
from collections import UserDict, UserList
|
||||
from dataclasses import dataclass
|
||||
from numbers import Number
|
||||
from typing import Iterable, List, Literal, Mapping, Sequence, Tuple, Union
|
||||
from typing import Iterable, List, Literal, Sequence
|
||||
|
||||
|
||||
@dataclass
|
||||
class FincalOptions:
|
||||
date_format: str = "%Y-%m-%d"
|
||||
closest: str = "before" # after
|
||||
from .utils import _parse_date, _preprocess_timeseries
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
@ -29,114 +25,6 @@ class AllFrequencies:
|
||||
Y = Frequency("annual", "years", 1, 365, "Y")
|
||||
|
||||
|
||||
class DateNotFoundError(Exception):
|
||||
"""Exception to be raised when date is not found"""
|
||||
|
||||
def __init__(self, message, date):
|
||||
message = f"{message}: {date}"
|
||||
super().__init__(message)
|
||||
|
||||
|
||||
def _parse_date(date: str, date_format: str = None):
|
||||
"""Parses date and handles errors"""
|
||||
|
||||
if isinstance(date, (datetime.datetime, datetime.date)):
|
||||
return datetime.datetime.fromordinal(date.toordinal())
|
||||
|
||||
if date_format is None:
|
||||
date_format = FincalOptions.date_format
|
||||
|
||||
try:
|
||||
date = datetime.datetime.strptime(date, date_format)
|
||||
except TypeError:
|
||||
raise ValueError("Date does not seem to be valid date-like string")
|
||||
except ValueError:
|
||||
raise ValueError("Date could not be parsed. Have you set the correct date format in FincalOptions.date_format?")
|
||||
return date
|
||||
|
||||
|
||||
def _preprocess_timeseries(
|
||||
data: Union[
|
||||
Sequence[Iterable[Union[str, datetime.datetime, float]]],
|
||||
Sequence[Mapping[str, Union[float, datetime.datetime]]],
|
||||
Sequence[Mapping[Union[str, datetime.datetime], float]],
|
||||
Mapping[Union[str, datetime.datetime], float],
|
||||
],
|
||||
date_format: str,
|
||||
) -> List[Tuple[datetime.datetime, float]]:
|
||||
"""Converts any type of list to the correct type"""
|
||||
|
||||
if isinstance(data, Mapping):
|
||||
current_data = [(k, v) for k, v in data.items()]
|
||||
return _preprocess_timeseries(current_data, date_format)
|
||||
|
||||
if not isinstance(data, Sequence):
|
||||
raise TypeError("Could not parse the data")
|
||||
|
||||
if isinstance(data[0], Sequence):
|
||||
return sorted([(_parse_date(i, date_format), j) for i, j in data])
|
||||
|
||||
if not isinstance(data[0], Mapping):
|
||||
raise TypeError("Could not parse the data")
|
||||
|
||||
if len(data[0]) == 1:
|
||||
current_data = [tuple(*i.items()) for i in data]
|
||||
elif len(data[0]) == 2:
|
||||
current_data = [tuple(i.values()) for i in data]
|
||||
else:
|
||||
raise TypeError("Could not parse the data")
|
||||
return _preprocess_timeseries(current_data, date_format)
|
||||
|
||||
|
||||
def _preprocess_match_options(as_on_match: str, prior_match: str, closest: str) -> datetime.timedelta:
|
||||
"""Checks the arguments and returns appropriate timedelta objects"""
|
||||
|
||||
deltas = {"exact": 0, "previous": -1, "next": 1}
|
||||
if closest not in deltas.keys():
|
||||
raise ValueError(f"Invalid argument for closest: {closest}")
|
||||
|
||||
as_on_match = closest if as_on_match == "closest" else as_on_match
|
||||
prior_match = closest if prior_match == "closest" else prior_match
|
||||
|
||||
if as_on_match in deltas.keys():
|
||||
as_on_delta = datetime.timedelta(days=deltas[as_on_match])
|
||||
else:
|
||||
raise ValueError(f"Invalid as_on_match argument: {as_on_match}")
|
||||
|
||||
if prior_match in deltas.keys():
|
||||
prior_delta = datetime.timedelta(days=deltas[prior_match])
|
||||
else:
|
||||
raise ValueError(f"Invalid prior_match argument: {prior_match}")
|
||||
|
||||
return as_on_delta, prior_delta
|
||||
|
||||
|
||||
def _find_closest_date(data, date, delta, if_not_found):
|
||||
"""Helper function to find data for the closest available date"""
|
||||
|
||||
row = data.get(date, None)
|
||||
if row is not None:
|
||||
return date, row
|
||||
|
||||
if delta:
|
||||
return _find_closest_date(data, date + delta, delta, if_not_found)
|
||||
|
||||
if if_not_found == "fail":
|
||||
raise DateNotFoundError("Data not found for date", date)
|
||||
if if_not_found == "nan":
|
||||
return date, float("NaN")
|
||||
|
||||
raise ValueError(f"Invalid argument for if_not_found: {if_not_found}")
|
||||
|
||||
|
||||
def _interval_to_years(interval_type: Literal["years", "months", "day"], interval_value: int) -> int:
|
||||
"""Converts any time period to years for use with compounding functions"""
|
||||
|
||||
year_conversion_factor = {"years": 1, "months": 12, "days": 365}
|
||||
years = interval_value / year_conversion_factor[interval_type]
|
||||
return years
|
||||
|
||||
|
||||
class _IndexSlicer:
|
||||
"""Class to create a slice using iloc in TimeSeriesCore"""
|
||||
|
||||
|
6
fincal/exceptions.py
Normal file
6
fincal/exceptions.py
Normal file
@ -0,0 +1,6 @@
|
||||
class DateNotFoundError(Exception):
|
||||
"""Exception to be raised when date is not found"""
|
||||
|
||||
def __init__(self, message, date):
|
||||
message = f"{message}: {date}"
|
||||
super().__init__(message)
|
@ -5,9 +5,8 @@ from typing import List, Literal, Union
|
||||
|
||||
from dateutil.relativedelta import relativedelta
|
||||
|
||||
from .core import (
|
||||
AllFrequencies,
|
||||
TimeSeriesCore,
|
||||
from .core import AllFrequencies, TimeSeriesCore
|
||||
from .utils import (
|
||||
_find_closest_date,
|
||||
_interval_to_years,
|
||||
_parse_date,
|
||||
|
111
fincal/utils.py
Normal file
111
fincal/utils.py
Normal file
@ -0,0 +1,111 @@
|
||||
import datetime
|
||||
from dataclasses import dataclass
|
||||
from typing import Iterable, List, Literal, Mapping, Sequence, Tuple, Union
|
||||
|
||||
from .exceptions import DateNotFoundError
|
||||
|
||||
|
||||
@dataclass
|
||||
class FincalOptions:
|
||||
date_format: str = "%Y-%m-%d"
|
||||
closest: str = "before" # after
|
||||
|
||||
|
||||
def _parse_date(date: str, date_format: str = None):
|
||||
"""Parses date and handles errors"""
|
||||
|
||||
if isinstance(date, (datetime.datetime, datetime.date)):
|
||||
return datetime.datetime.fromordinal(date.toordinal())
|
||||
|
||||
if date_format is None:
|
||||
date_format = FincalOptions.date_format
|
||||
|
||||
try:
|
||||
date = datetime.datetime.strptime(date, date_format)
|
||||
except TypeError:
|
||||
raise ValueError("Date does not seem to be valid date-like string")
|
||||
except ValueError:
|
||||
raise ValueError("Date could not be parsed. Have you set the correct date format in FincalOptions.date_format?")
|
||||
return date
|
||||
|
||||
|
||||
def _preprocess_timeseries(
|
||||
data: Union[
|
||||
Sequence[Iterable[Union[str, datetime.datetime, float]]],
|
||||
Sequence[Mapping[str, Union[float, datetime.datetime]]],
|
||||
Sequence[Mapping[Union[str, datetime.datetime], float]],
|
||||
Mapping[Union[str, datetime.datetime], float],
|
||||
],
|
||||
date_format: str,
|
||||
) -> List[Tuple[datetime.datetime, float]]:
|
||||
"""Converts any type of list to the correct type"""
|
||||
|
||||
if isinstance(data, Mapping):
|
||||
current_data = [(k, v) for k, v in data.items()]
|
||||
return _preprocess_timeseries(current_data, date_format)
|
||||
|
||||
if not isinstance(data, Sequence):
|
||||
raise TypeError("Could not parse the data")
|
||||
|
||||
if isinstance(data[0], Sequence):
|
||||
return sorted([(_parse_date(i, date_format), j) for i, j in data])
|
||||
|
||||
if not isinstance(data[0], Mapping):
|
||||
raise TypeError("Could not parse the data")
|
||||
|
||||
if len(data[0]) == 1:
|
||||
current_data = [tuple(*i.items()) for i in data]
|
||||
elif len(data[0]) == 2:
|
||||
current_data = [tuple(i.values()) for i in data]
|
||||
else:
|
||||
raise TypeError("Could not parse the data")
|
||||
return _preprocess_timeseries(current_data, date_format)
|
||||
|
||||
|
||||
def _preprocess_match_options(as_on_match: str, prior_match: str, closest: str) -> datetime.timedelta:
|
||||
"""Checks the arguments and returns appropriate timedelta objects"""
|
||||
|
||||
deltas = {"exact": 0, "previous": -1, "next": 1}
|
||||
if closest not in deltas.keys():
|
||||
raise ValueError(f"Invalid argument for closest: {closest}")
|
||||
|
||||
as_on_match = closest if as_on_match == "closest" else as_on_match
|
||||
prior_match = closest if prior_match == "closest" else prior_match
|
||||
|
||||
if as_on_match in deltas.keys():
|
||||
as_on_delta = datetime.timedelta(days=deltas[as_on_match])
|
||||
else:
|
||||
raise ValueError(f"Invalid as_on_match argument: {as_on_match}")
|
||||
|
||||
if prior_match in deltas.keys():
|
||||
prior_delta = datetime.timedelta(days=deltas[prior_match])
|
||||
else:
|
||||
raise ValueError(f"Invalid prior_match argument: {prior_match}")
|
||||
|
||||
return as_on_delta, prior_delta
|
||||
|
||||
|
||||
def _find_closest_date(data, date, delta, if_not_found):
|
||||
"""Helper function to find data for the closest available date"""
|
||||
|
||||
row = data.get(date, None)
|
||||
if row is not None:
|
||||
return date, row
|
||||
|
||||
if delta:
|
||||
return _find_closest_date(data, date + delta, delta, if_not_found)
|
||||
|
||||
if if_not_found == "fail":
|
||||
raise DateNotFoundError("Data not found for date", date)
|
||||
if if_not_found == "nan":
|
||||
return date, float("NaN")
|
||||
|
||||
raise ValueError(f"Invalid argument for if_not_found: {if_not_found}")
|
||||
|
||||
|
||||
def _interval_to_years(interval_type: Literal["years", "months", "day"], interval_value: int) -> int:
|
||||
"""Converts any time period to years for use with compounding functions"""
|
||||
|
||||
year_conversion_factor = {"years": 1, "months": 12, "days": 365}
|
||||
years = interval_value / year_conversion_factor[interval_type]
|
||||
return years
|
111
testing.ipynb
111
testing.ipynb
@ -20,11 +20,19 @@
|
||||
"id": "4b8ccd5f-dfff-4202-82c4-f66a30c122b6",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"CPU times: total: 125 ms\n",
|
||||
"Wall time: 99 ms\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[(datetime.datetime(2022, 1, 31, 0, 0), 310.980011),\n",
|
||||
" (datetime.datetime(2021, 5, 28, 0, 0), 249.679993)]"
|
||||
" (datetime.datetime(2021, 5, 28, 0, 0), 249.67999300000002)]"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
@ -33,6 +41,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"dfd = pd.read_csv('test_files/msft.csv')\n",
|
||||
"# dfd = dfd[dfd['amfi_code'] == 118825].reset_index(drop=True)\n",
|
||||
"ts = TimeSeries([(i.date, i.nav) for i in dfd.itertuples()], frequency='D')\n",
|
||||
@ -40,6 +49,27 @@
|
||||
"ts[['2022-01-31', '2021-05-28']]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "ffd9665d",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(datetime.datetime(2022, 1, 31, 0, 0), 310.980011)"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"ts['2022-01-31']"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
@ -50,7 +80,8 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Wall time: 17 ms\n"
|
||||
"CPU times: total: 15.6 ms\n",
|
||||
"Wall time: 16 ms\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -86,7 +117,8 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Wall time: 5.97 ms\n"
|
||||
"CPU times: total: 15.6 ms\n",
|
||||
"Wall time: 4 ms\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -95,7 +127,7 @@
|
||||
"[(datetime.datetime(1992, 2, 19, 0, 0), 2.398438),\n",
|
||||
" (datetime.datetime(1992, 2, 20, 0, 0), 2.447917),\n",
|
||||
" (datetime.datetime(1992, 2, 21, 0, 0), 2.385417),\n",
|
||||
" (datetime.datetime(1992, 2, 24, 0, 0), 2.393229),\n",
|
||||
" (datetime.datetime(1992, 2, 24, 0, 0), 2.3932290000000003),\n",
|
||||
" (datetime.datetime(1992, 2, 25, 0, 0), 2.411458),\n",
|
||||
" (datetime.datetime(1992, 2, 26, 0, 0), 2.541667),\n",
|
||||
" (datetime.datetime(1992, 2, 27, 0, 0), 2.601563),\n",
|
||||
@ -116,7 +148,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": 11,
|
||||
"id": "dc469722-c816-4b57-8d91-7a3b865f86be",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
@ -126,7 +158,8 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Wall time: 311 ms\n"
|
||||
"CPU times: total: 297 ms\n",
|
||||
"Wall time: 290 ms\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@ -186,6 +219,70 @@
|
||||
"sr = Series([1, 2, 3, 4, 5], 'number')\n",
|
||||
"sr"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "adceda69",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fincal.fincal import TimeSeries\n",
|
||||
"import datetime\n",
|
||||
"ts = TimeSeries(data = [('2021-01-01', 220), ('2021-02-01', 230), ('2021-03-01', 240)], frequency='M')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "68cf9f8c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(datetime.datetime(2021, 2, 1, 0, 0), 0.045454545454545414)"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"ts.calculate_returns('2021-02-05', interval_type='months', interval_value=1, compounding=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "a583347f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"D = {'a': 1, 'b': 2}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "f79ac787",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"dict_keys(['a', 'b'])"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"D.keys()"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
@ -204,7 +301,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.2"
|
||||
"version": "3.8.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@ -4,8 +4,10 @@ import random
|
||||
from typing import Literal, Sequence
|
||||
|
||||
import pytest
|
||||
from fincal.core import DateNotFoundError, FincalOptions, Frequency, Series
|
||||
from fincal.core import Frequency, Series
|
||||
from fincal.exceptions import DateNotFoundError
|
||||
from fincal.fincal import TimeSeries, create_date_series
|
||||
from fincal.utils import FincalOptions
|
||||
|
||||
THIS_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
sample_data_path = os.path.join(THIS_DIR, "data")
|
||||
|
Loading…
Reference in New Issue
Block a user