Compare commits
5 Commits
7cac5cc307
...
ad68dcd930
Author | SHA1 | Date | |
---|---|---|---|
ad68dcd930 | |||
cad4e1f45c | |||
0cbfede7b6 | |||
336276cf4b | |||
c9bfa485f5 |
@ -2,7 +2,7 @@ import datetime
|
|||||||
from collections import UserDict, UserList
|
from collections import UserDict, UserList
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from numbers import Number
|
from numbers import Number
|
||||||
from typing import Iterable, List, Literal, Sequence
|
from typing import Iterable, List, Literal, Sequence, Tuple
|
||||||
|
|
||||||
from .utils import _parse_date, _preprocess_timeseries
|
from .utils import _parse_date, _preprocess_timeseries
|
||||||
|
|
||||||
@ -189,29 +189,40 @@ class TimeSeriesCore(UserDict):
|
|||||||
self._end_date = None
|
self._end_date = None
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def dates(self):
|
def dates(self) -> Series:
|
||||||
|
"""Get a list of all the dates in the TimeSeries object"""
|
||||||
|
|
||||||
if self._dates is None or len(self._dates) != len(self.data):
|
if self._dates is None or len(self._dates) != len(self.data):
|
||||||
self._dates = list(self.data.keys())
|
self._dates = list(self.data.keys())
|
||||||
|
|
||||||
return Series(self._dates, "date")
|
return Series(self._dates, "date")
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def values(self):
|
def values(self) -> Series:
|
||||||
|
"""Get a list of all the Values in the TimeSeries object"""
|
||||||
|
|
||||||
if self._values is None or len(self._values) != len(self.data):
|
if self._values is None or len(self._values) != len(self.data):
|
||||||
self._values = list(self.data.values())
|
self._values = list(self.data.values())
|
||||||
|
|
||||||
return Series(self._values, "number")
|
return Series(self._values, "number")
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def start_date(self):
|
def start_date(self) -> datetime.datetime:
|
||||||
|
"""The first date in the TimeSeries object"""
|
||||||
|
|
||||||
return self.dates[0]
|
return self.dates[0]
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def end_date(self):
|
def end_date(self) -> datetime.datetime:
|
||||||
|
"""The last date in the TimeSeries object"""
|
||||||
|
|
||||||
return self.dates[-1]
|
return self.dates[-1]
|
||||||
|
|
||||||
def _get_printable_slice(self, n: int):
|
def _get_printable_slice(self, n: int):
|
||||||
"""Returns a slice of the dataframe from beginning and end"""
|
"""Helper function for __repr__ and __str__
|
||||||
|
|
||||||
|
Returns a slice of the dataframe from beginning and end.
|
||||||
|
"""
|
||||||
|
|
||||||
printable = {}
|
printable = {}
|
||||||
iter_f = iter(self.data)
|
iter_f = iter(self.data)
|
||||||
@ -322,7 +333,21 @@ class TimeSeriesCore(UserDict):
|
|||||||
return self.data.items()
|
return self.data.items()
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def iloc(self):
|
def iloc(self) -> List[Tuple[datetime.datetime, float]]:
|
||||||
"""Returns an item or a set of items based on index"""
|
"""Returns an item or a set of items based on index
|
||||||
|
|
||||||
|
supports slicing using numerical index.
|
||||||
|
Accepts integers or Python slice objects
|
||||||
|
|
||||||
|
Usage
|
||||||
|
-----
|
||||||
|
>>> ts = TimeSeries(data, frequency='D')
|
||||||
|
>>> ts.iloc[0] # get the first value
|
||||||
|
>>> ts.iloc[-1] # get the last value
|
||||||
|
>>> ts.iloc[:3] # get the first 3 values
|
||||||
|
>>> ts.illoc[-3:] # get the last 3 values
|
||||||
|
>>> ts.iloc[5:10] # get five values starting from the fifth value
|
||||||
|
>>> ts.iloc[::2] # get every alternate date
|
||||||
|
"""
|
||||||
|
|
||||||
return _IndexSlicer(self)
|
return _IndexSlicer(self)
|
||||||
|
@ -1,6 +1,21 @@
|
|||||||
|
import datetime
|
||||||
|
from typing import Literal
|
||||||
|
|
||||||
|
|
||||||
class DateNotFoundError(Exception):
|
class DateNotFoundError(Exception):
|
||||||
"""Exception to be raised when date is not found"""
|
"""Exception to be raised when date is not found"""
|
||||||
|
|
||||||
def __init__(self, message, date):
|
def __init__(self, message, date):
|
||||||
message = f"{message}: {date}"
|
message = f"{message}: {date}"
|
||||||
super().__init__(message)
|
super().__init__(message)
|
||||||
|
|
||||||
|
|
||||||
|
class DateOutOfRangeError(Exception):
|
||||||
|
"""Exception to be raised when provided date is outside the range of dates in the time series"""
|
||||||
|
|
||||||
|
def __init__(self, date: datetime.datetime, type: Literal['min', 'max']) -> None:
|
||||||
|
if type == 'min':
|
||||||
|
message = f"Provided date {date} is before the first date in the TimeSeries"
|
||||||
|
if type == 'max':
|
||||||
|
message = f"Provided date {date} is after the last date in the TimeSeries"
|
||||||
|
super().__init__(message)
|
||||||
|
185
fincal/fincal.py
185
fincal/fincal.py
@ -1,7 +1,7 @@
|
|||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
import datetime
|
import datetime
|
||||||
from typing import List, Literal, Union
|
from typing import Iterable, List, Literal, Mapping, Union
|
||||||
|
|
||||||
from dateutil.relativedelta import relativedelta
|
from dateutil.relativedelta import relativedelta
|
||||||
|
|
||||||
@ -15,9 +15,41 @@ from .utils import (
|
|||||||
|
|
||||||
|
|
||||||
def create_date_series(
|
def create_date_series(
|
||||||
start_date: datetime.datetime, end_date: datetime.datetime, frequency: str, eomonth: bool = False
|
start_date: Union[str, datetime.datetime],
|
||||||
|
end_date: Union[str, datetime.datetime],
|
||||||
|
frequency: Literal["D", "W", "M", "Q", "H", "Y"],
|
||||||
|
eomonth: bool = False,
|
||||||
) -> List[datetime.datetime]:
|
) -> List[datetime.datetime]:
|
||||||
"""Creates a date series using a frequency"""
|
"""Create a date series with a specified frequency
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
start_date : str | datetime.datetime
|
||||||
|
Date series will always start at this date
|
||||||
|
|
||||||
|
end_date : str | datetime.datetime
|
||||||
|
The date till which the series should extend
|
||||||
|
Depending on the other parameters, this date may or may not be present
|
||||||
|
in the final date series
|
||||||
|
|
||||||
|
frequency : D | W | M | Q | H | Y
|
||||||
|
Frequency of the date series.
|
||||||
|
The gap between each successive date will be equivalent to this frequency
|
||||||
|
|
||||||
|
eomonth : bool, optional
|
||||||
|
Speacifies if the dates in the series should be end of month dates.
|
||||||
|
Can only be used if the frequency is Monthly or lower.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
List[datetime.datetime]
|
||||||
|
Returns the series as a list of datetime objects
|
||||||
|
|
||||||
|
Raises
|
||||||
|
------
|
||||||
|
ValueError
|
||||||
|
If eomonth is True and frequency is higher than monthly
|
||||||
|
"""
|
||||||
|
|
||||||
frequency = getattr(AllFrequencies, frequency)
|
frequency = getattr(AllFrequencies, frequency)
|
||||||
if eomonth and frequency.days < AllFrequencies.M.days:
|
if eomonth and frequency.days < AllFrequencies.M.days:
|
||||||
@ -31,11 +63,11 @@ def create_date_series(
|
|||||||
for i in range(0, int(datediff)):
|
for i in range(0, int(datediff)):
|
||||||
diff = {frequency.freq_type: frequency.value * i}
|
diff = {frequency.freq_type: frequency.value * i}
|
||||||
date = start_date + relativedelta(**diff)
|
date = start_date + relativedelta(**diff)
|
||||||
|
|
||||||
if eomonth:
|
if eomonth:
|
||||||
if date.month == 12:
|
next_month = 1 if date.month == 12 else date.month + 1
|
||||||
date = date.replace(day=31)
|
date = date.replace(day=1).replace(month=next_month) - relativedelta(days=1)
|
||||||
else:
|
|
||||||
date = date.replace(day=1).replace(month=date.month+1) - relativedelta(days=1)
|
|
||||||
if date <= end_date:
|
if date <= end_date:
|
||||||
dates.append(date)
|
dates.append(date)
|
||||||
|
|
||||||
@ -43,7 +75,40 @@ def create_date_series(
|
|||||||
|
|
||||||
|
|
||||||
class TimeSeries(TimeSeriesCore):
|
class TimeSeries(TimeSeriesCore):
|
||||||
"""Container for TimeSeries objects"""
|
"""1-Dimensional Time Series object
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
data : List[Iterable] | Mapping
|
||||||
|
Time Series data in the form of list of tuples.
|
||||||
|
The first element of each tuple should be a date and second element should be a value.
|
||||||
|
The following types of objects can be passed to create a TimeSeries object:
|
||||||
|
* List of tuples containing date & value
|
||||||
|
* List of lists containing date & value
|
||||||
|
* List of dictionaries containing key: value pair of date and value
|
||||||
|
* List of dictionaries with 2 keys, first representing date & second representing value
|
||||||
|
* Dictionary of key: value pairs
|
||||||
|
|
||||||
|
date_format : str, optional, default "%Y-%m-%d"
|
||||||
|
Specify the format of the date
|
||||||
|
Required only if the first argument of tuples is a string. Otherwise ignored.
|
||||||
|
|
||||||
|
frequency : str, optional, default "infer"
|
||||||
|
The frequency of the time series. Default is infer.
|
||||||
|
The class will try to infer the frequency automatically and adjust to the closest member.
|
||||||
|
Note that inferring frequencies can fail if the data is too irregular.
|
||||||
|
Valid values are {D, W, M, Q, H, Y}
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
data: Union[List[Iterable], Mapping],
|
||||||
|
frequency: Literal["D", "W", "M", "Q", "H", "Y"],
|
||||||
|
date_format: str = "%Y-%m-%d",
|
||||||
|
):
|
||||||
|
"""Instantiate a TimeSeriesCore object"""
|
||||||
|
|
||||||
|
super().__init__(data, frequency, date_format)
|
||||||
|
|
||||||
def info(self):
|
def info(self):
|
||||||
"""Summary info about the TimeSeries object"""
|
"""Summary info about the TimeSeries object"""
|
||||||
@ -125,12 +190,13 @@ class TimeSeries(TimeSeriesCore):
|
|||||||
return_actual_date: bool = True,
|
return_actual_date: bool = True,
|
||||||
as_on_match: str = "closest",
|
as_on_match: str = "closest",
|
||||||
prior_match: str = "closest",
|
prior_match: str = "closest",
|
||||||
closest: str = "previous",
|
closest: Literal["previous", "next", "exact"] = "previous",
|
||||||
if_not_found: Literal['fail', 'nan'] = 'fail',
|
closest_max_days: int = -1,
|
||||||
|
if_not_found: Literal["fail", "nan"] = "fail",
|
||||||
compounding: bool = True,
|
compounding: bool = True,
|
||||||
interval_type: Literal['years', 'months', 'days'] = 'years',
|
interval_type: Literal["years", "months", "days"] = "years",
|
||||||
interval_value: int = 1,
|
interval_value: int = 1,
|
||||||
date_format: str = None
|
date_format: str = None,
|
||||||
) -> float:
|
) -> float:
|
||||||
"""Method to calculate returns for a certain time-period as on a particular date
|
"""Method to calculate returns for a certain time-period as on a particular date
|
||||||
|
|
||||||
@ -153,6 +219,12 @@ class TimeSeries(TimeSeriesCore):
|
|||||||
The mode of matching the closest date.
|
The mode of matching the closest date.
|
||||||
Valid values are 'exact', 'previous', 'next' and next.
|
Valid values are 'exact', 'previous', 'next' and next.
|
||||||
|
|
||||||
|
closest_max_days: int, default -1
|
||||||
|
The maximum acceptable gap between the provided date arguments and actual date.
|
||||||
|
Pass -1 for no limit.
|
||||||
|
Note: There's a hard max limit of 1000 days due to Python's limits on recursion.
|
||||||
|
This can be overridden by importing the sys module.
|
||||||
|
|
||||||
if_not_found : 'fail' | 'nan'
|
if_not_found : 'fail' | 'nan'
|
||||||
What to do when required date is not found:
|
What to do when required date is not found:
|
||||||
* fail: Raise a ValueError
|
* fail: Raise a ValueError
|
||||||
@ -185,17 +257,18 @@ class TimeSeries(TimeSeriesCore):
|
|||||||
Example
|
Example
|
||||||
--------
|
--------
|
||||||
>>> calculate_returns(datetime.date(2020, 1, 1), years=1)
|
>>> calculate_returns(datetime.date(2020, 1, 1), years=1)
|
||||||
|
(datetime.datetime(2020, 1, 1, 0, 0), .0567)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
as_on = _parse_date(as_on, date_format)
|
as_on = _parse_date(as_on, date_format)
|
||||||
as_on_delta, prior_delta = _preprocess_match_options(as_on_match, prior_match, closest)
|
as_on_delta, prior_delta = _preprocess_match_options(as_on_match, prior_match, closest)
|
||||||
|
|
||||||
prev_date = as_on - relativedelta(**{interval_type: interval_value})
|
prev_date = as_on - relativedelta(**{interval_type: interval_value})
|
||||||
current = _find_closest_date(self.data, as_on, as_on_delta, if_not_found)
|
current = _find_closest_date(self.data, as_on, closest_max_days, as_on_delta, if_not_found)
|
||||||
previous = _find_closest_date(self.data, prev_date, prior_delta, if_not_found)
|
previous = _find_closest_date(self.data, prev_date, closest_max_days, prior_delta, if_not_found)
|
||||||
|
|
||||||
if current[1] == str('nan') or previous[1] == str('nan'):
|
if current[1] == str("nan") or previous[1] == str("nan"):
|
||||||
return as_on, float('NaN')
|
return as_on, float("NaN")
|
||||||
|
|
||||||
returns = current[1] / previous[1]
|
returns = current[1] / previous[1]
|
||||||
if compounding:
|
if compounding:
|
||||||
@ -207,17 +280,81 @@ class TimeSeries(TimeSeriesCore):
|
|||||||
self,
|
self,
|
||||||
from_date: Union[datetime.date, str],
|
from_date: Union[datetime.date, str],
|
||||||
to_date: Union[datetime.date, str],
|
to_date: Union[datetime.date, str],
|
||||||
frequency: str = None,
|
frequency: Literal["D", "W", "M", "Q", "H", "Y"] = None,
|
||||||
as_on_match: str = "closest",
|
as_on_match: str = "closest",
|
||||||
prior_match: str = "closest",
|
prior_match: str = "closest",
|
||||||
closest: str = "previous",
|
closest: Literal["previous", "next", "exact"] = "previous",
|
||||||
if_not_found: Literal['fail', 'nan'] = 'fail',
|
if_not_found: Literal["fail", "nan"] = "fail",
|
||||||
compounding: bool = True,
|
compounding: bool = True,
|
||||||
interval_type: Literal['years', 'months', 'days'] = 'years',
|
interval_type: Literal["years", "months", "days"] = "years",
|
||||||
interval_value: int = 1,
|
interval_value: int = 1,
|
||||||
date_format: str = None
|
date_format: str = None,
|
||||||
) -> List[tuple]:
|
) -> TimeSeries:
|
||||||
"""Calculates the rolling return"""
|
"""Calculate the returns on a rolling basis.
|
||||||
|
This is a wrapper function around the calculate_returns function.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
from_date : datetime.date | str
|
||||||
|
Start date for the return calculation.
|
||||||
|
|
||||||
|
to_date : datetime.date | str
|
||||||
|
End date for the returns calculation.
|
||||||
|
|
||||||
|
frequency : str, optional
|
||||||
|
Frequency at which the returns should be calcualated.
|
||||||
|
Valid values are {D, W, M, Q, H, Y}
|
||||||
|
|
||||||
|
as_on_match : str, optional
|
||||||
|
The match mode to be used for the as on date.
|
||||||
|
If not specified, the value for the closes parameter will be used.
|
||||||
|
|
||||||
|
prior_match : str, optional
|
||||||
|
The match mode to be used for the prior date, i.e., the date against which the return will be calculated.
|
||||||
|
If not specified, the value for the closes parameter will be used.
|
||||||
|
|
||||||
|
closest : previous | next | exact
|
||||||
|
The default match mode for dates.
|
||||||
|
* Previous: look for the immediate previous available date
|
||||||
|
* Next: look for the immediate next available date
|
||||||
|
* Exact: Only look for the exact date passed in the input
|
||||||
|
|
||||||
|
if_not_found : fail | nan
|
||||||
|
Specifies what should be done if the date is not found.
|
||||||
|
* fail: raise a DateNotFoundError.
|
||||||
|
* nan: return nan as the value.
|
||||||
|
Note, this will return float('NaN') and not 'nan' as string.
|
||||||
|
|
||||||
|
Note, this function will always raise an error if it is not possible to find a matching date.`
|
||||||
|
For instance, if the input date is before the starting of the first date of the time series,
|
||||||
|
but match mode is set to previous. A DateOutOfRangeError will be raised in such cases.
|
||||||
|
|
||||||
|
compounding : bool, optional
|
||||||
|
Should the returns be compounded annually.
|
||||||
|
|
||||||
|
interval_type : years | month | days
|
||||||
|
The interval for the return calculation.
|
||||||
|
|
||||||
|
interval_value : int, optional
|
||||||
|
The value of the interval for return calculation.
|
||||||
|
|
||||||
|
date_format : str, optional
|
||||||
|
A datetime library compatible format string.
|
||||||
|
If not specified, will use the setting in FincalOptions.date_format.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
Returs the rolling returns as a TimeSeries object.
|
||||||
|
|
||||||
|
Raises
|
||||||
|
------
|
||||||
|
ValueError
|
||||||
|
- If an invalid argument is passed for frequency parameter.
|
||||||
|
|
||||||
|
See also
|
||||||
|
--------
|
||||||
|
TimeSeries.calculate_returns
|
||||||
|
"""
|
||||||
|
|
||||||
from_date = _parse_date(from_date, date_format)
|
from_date = _parse_date(from_date, date_format)
|
||||||
to_date = _parse_date(to_date, date_format)
|
to_date = _parse_date(to_date, date_format)
|
||||||
@ -244,7 +381,7 @@ class TimeSeries(TimeSeriesCore):
|
|||||||
as_on_match=as_on_match,
|
as_on_match=as_on_match,
|
||||||
prior_match=prior_match,
|
prior_match=prior_match,
|
||||||
closest=closest,
|
closest=closest,
|
||||||
if_not_found=if_not_found
|
if_not_found=if_not_found,
|
||||||
)
|
)
|
||||||
rolling_returns.append(returns)
|
rolling_returns.append(returns)
|
||||||
rolling_returns.sort()
|
rolling_returns.sort()
|
||||||
|
@ -2,7 +2,7 @@ import datetime
|
|||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from typing import Iterable, List, Literal, Mapping, Sequence, Tuple, Union
|
from typing import Iterable, List, Literal, Mapping, Sequence, Tuple, Union
|
||||||
|
|
||||||
from .exceptions import DateNotFoundError
|
from .exceptions import DateNotFoundError, DateOutOfRangeError
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
@ -85,15 +85,20 @@ def _preprocess_match_options(as_on_match: str, prior_match: str, closest: str)
|
|||||||
return as_on_delta, prior_delta
|
return as_on_delta, prior_delta
|
||||||
|
|
||||||
|
|
||||||
def _find_closest_date(data, date, delta, if_not_found):
|
def _find_closest_date(data, date, limit_days, delta, if_not_found):
|
||||||
"""Helper function to find data for the closest available date"""
|
"""Helper function to find data for the closest available date"""
|
||||||
|
|
||||||
|
if delta.days < 0 and date < min(data):
|
||||||
|
raise DateOutOfRangeError(date, 'min')
|
||||||
|
if delta.days > 0 and date > max(data):
|
||||||
|
raise DateOutOfRangeError(date, 'max')
|
||||||
|
|
||||||
row = data.get(date, None)
|
row = data.get(date, None)
|
||||||
if row is not None:
|
if row is not None:
|
||||||
return date, row
|
return date, row
|
||||||
|
|
||||||
if delta:
|
if delta and limit_days != 0:
|
||||||
return _find_closest_date(data, date + delta, delta, if_not_found)
|
return _find_closest_date(data, date + delta, limit_days-1, delta, if_not_found)
|
||||||
|
|
||||||
if if_not_found == "fail":
|
if if_not_found == "fail":
|
||||||
raise DateNotFoundError("Data not found for date", date)
|
raise DateNotFoundError("Data not found for date", date)
|
||||||
|
Loading…
Reference in New Issue
Block a user