Compare commits
No commits in common. "ad68dcd9307d7aada90da60d9591b696bf054cc3" and "7cac5cc307118f46d0b947814a73f6760b1e12a6" have entirely different histories.
ad68dcd930
...
7cac5cc307
@ -2,7 +2,7 @@ import datetime
|
||||
from collections import UserDict, UserList
|
||||
from dataclasses import dataclass
|
||||
from numbers import Number
|
||||
from typing import Iterable, List, Literal, Sequence, Tuple
|
||||
from typing import Iterable, List, Literal, Sequence
|
||||
|
||||
from .utils import _parse_date, _preprocess_timeseries
|
||||
|
||||
@ -189,40 +189,29 @@ class TimeSeriesCore(UserDict):
|
||||
self._end_date = None
|
||||
|
||||
@property
|
||||
def dates(self) -> Series:
|
||||
"""Get a list of all the dates in the TimeSeries object"""
|
||||
|
||||
def dates(self):
|
||||
if self._dates is None or len(self._dates) != len(self.data):
|
||||
self._dates = list(self.data.keys())
|
||||
|
||||
return Series(self._dates, "date")
|
||||
|
||||
@property
|
||||
def values(self) -> Series:
|
||||
"""Get a list of all the Values in the TimeSeries object"""
|
||||
|
||||
def values(self):
|
||||
if self._values is None or len(self._values) != len(self.data):
|
||||
self._values = list(self.data.values())
|
||||
|
||||
return Series(self._values, "number")
|
||||
|
||||
@property
|
||||
def start_date(self) -> datetime.datetime:
|
||||
"""The first date in the TimeSeries object"""
|
||||
|
||||
def start_date(self):
|
||||
return self.dates[0]
|
||||
|
||||
@property
|
||||
def end_date(self) -> datetime.datetime:
|
||||
"""The last date in the TimeSeries object"""
|
||||
|
||||
def end_date(self):
|
||||
return self.dates[-1]
|
||||
|
||||
def _get_printable_slice(self, n: int):
|
||||
"""Helper function for __repr__ and __str__
|
||||
|
||||
Returns a slice of the dataframe from beginning and end.
|
||||
"""
|
||||
"""Returns a slice of the dataframe from beginning and end"""
|
||||
|
||||
printable = {}
|
||||
iter_f = iter(self.data)
|
||||
@ -333,21 +322,7 @@ class TimeSeriesCore(UserDict):
|
||||
return self.data.items()
|
||||
|
||||
@property
|
||||
def iloc(self) -> List[Tuple[datetime.datetime, float]]:
|
||||
"""Returns an item or a set of items based on index
|
||||
|
||||
supports slicing using numerical index.
|
||||
Accepts integers or Python slice objects
|
||||
|
||||
Usage
|
||||
-----
|
||||
>>> ts = TimeSeries(data, frequency='D')
|
||||
>>> ts.iloc[0] # get the first value
|
||||
>>> ts.iloc[-1] # get the last value
|
||||
>>> ts.iloc[:3] # get the first 3 values
|
||||
>>> ts.illoc[-3:] # get the last 3 values
|
||||
>>> ts.iloc[5:10] # get five values starting from the fifth value
|
||||
>>> ts.iloc[::2] # get every alternate date
|
||||
"""
|
||||
def iloc(self):
|
||||
"""Returns an item or a set of items based on index"""
|
||||
|
||||
return _IndexSlicer(self)
|
||||
|
@ -1,21 +1,6 @@
|
||||
import datetime
|
||||
from typing import Literal
|
||||
|
||||
|
||||
class DateNotFoundError(Exception):
|
||||
"""Exception to be raised when date is not found"""
|
||||
|
||||
def __init__(self, message, date):
|
||||
message = f"{message}: {date}"
|
||||
super().__init__(message)
|
||||
|
||||
|
||||
class DateOutOfRangeError(Exception):
|
||||
"""Exception to be raised when provided date is outside the range of dates in the time series"""
|
||||
|
||||
def __init__(self, date: datetime.datetime, type: Literal['min', 'max']) -> None:
|
||||
if type == 'min':
|
||||
message = f"Provided date {date} is before the first date in the TimeSeries"
|
||||
if type == 'max':
|
||||
message = f"Provided date {date} is after the last date in the TimeSeries"
|
||||
super().__init__(message)
|
||||
|
185
fincal/fincal.py
185
fincal/fincal.py
@ -1,7 +1,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import datetime
|
||||
from typing import Iterable, List, Literal, Mapping, Union
|
||||
from typing import List, Literal, Union
|
||||
|
||||
from dateutil.relativedelta import relativedelta
|
||||
|
||||
@ -15,41 +15,9 @@ from .utils import (
|
||||
|
||||
|
||||
def create_date_series(
|
||||
start_date: Union[str, datetime.datetime],
|
||||
end_date: Union[str, datetime.datetime],
|
||||
frequency: Literal["D", "W", "M", "Q", "H", "Y"],
|
||||
eomonth: bool = False,
|
||||
start_date: datetime.datetime, end_date: datetime.datetime, frequency: str, eomonth: bool = False
|
||||
) -> List[datetime.datetime]:
|
||||
"""Create a date series with a specified frequency
|
||||
|
||||
Parameters
|
||||
----------
|
||||
start_date : str | datetime.datetime
|
||||
Date series will always start at this date
|
||||
|
||||
end_date : str | datetime.datetime
|
||||
The date till which the series should extend
|
||||
Depending on the other parameters, this date may or may not be present
|
||||
in the final date series
|
||||
|
||||
frequency : D | W | M | Q | H | Y
|
||||
Frequency of the date series.
|
||||
The gap between each successive date will be equivalent to this frequency
|
||||
|
||||
eomonth : bool, optional
|
||||
Speacifies if the dates in the series should be end of month dates.
|
||||
Can only be used if the frequency is Monthly or lower.
|
||||
|
||||
Returns
|
||||
-------
|
||||
List[datetime.datetime]
|
||||
Returns the series as a list of datetime objects
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
If eomonth is True and frequency is higher than monthly
|
||||
"""
|
||||
"""Creates a date series using a frequency"""
|
||||
|
||||
frequency = getattr(AllFrequencies, frequency)
|
||||
if eomonth and frequency.days < AllFrequencies.M.days:
|
||||
@ -63,11 +31,11 @@ def create_date_series(
|
||||
for i in range(0, int(datediff)):
|
||||
diff = {frequency.freq_type: frequency.value * i}
|
||||
date = start_date + relativedelta(**diff)
|
||||
|
||||
if eomonth:
|
||||
next_month = 1 if date.month == 12 else date.month + 1
|
||||
date = date.replace(day=1).replace(month=next_month) - relativedelta(days=1)
|
||||
|
||||
if date.month == 12:
|
||||
date = date.replace(day=31)
|
||||
else:
|
||||
date = date.replace(day=1).replace(month=date.month+1) - relativedelta(days=1)
|
||||
if date <= end_date:
|
||||
dates.append(date)
|
||||
|
||||
@ -75,40 +43,7 @@ def create_date_series(
|
||||
|
||||
|
||||
class TimeSeries(TimeSeriesCore):
|
||||
"""1-Dimensional Time Series object
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : List[Iterable] | Mapping
|
||||
Time Series data in the form of list of tuples.
|
||||
The first element of each tuple should be a date and second element should be a value.
|
||||
The following types of objects can be passed to create a TimeSeries object:
|
||||
* List of tuples containing date & value
|
||||
* List of lists containing date & value
|
||||
* List of dictionaries containing key: value pair of date and value
|
||||
* List of dictionaries with 2 keys, first representing date & second representing value
|
||||
* Dictionary of key: value pairs
|
||||
|
||||
date_format : str, optional, default "%Y-%m-%d"
|
||||
Specify the format of the date
|
||||
Required only if the first argument of tuples is a string. Otherwise ignored.
|
||||
|
||||
frequency : str, optional, default "infer"
|
||||
The frequency of the time series. Default is infer.
|
||||
The class will try to infer the frequency automatically and adjust to the closest member.
|
||||
Note that inferring frequencies can fail if the data is too irregular.
|
||||
Valid values are {D, W, M, Q, H, Y}
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
data: Union[List[Iterable], Mapping],
|
||||
frequency: Literal["D", "W", "M", "Q", "H", "Y"],
|
||||
date_format: str = "%Y-%m-%d",
|
||||
):
|
||||
"""Instantiate a TimeSeriesCore object"""
|
||||
|
||||
super().__init__(data, frequency, date_format)
|
||||
"""Container for TimeSeries objects"""
|
||||
|
||||
def info(self):
|
||||
"""Summary info about the TimeSeries object"""
|
||||
@ -190,13 +125,12 @@ class TimeSeries(TimeSeriesCore):
|
||||
return_actual_date: bool = True,
|
||||
as_on_match: str = "closest",
|
||||
prior_match: str = "closest",
|
||||
closest: Literal["previous", "next", "exact"] = "previous",
|
||||
closest_max_days: int = -1,
|
||||
if_not_found: Literal["fail", "nan"] = "fail",
|
||||
closest: str = "previous",
|
||||
if_not_found: Literal['fail', 'nan'] = 'fail',
|
||||
compounding: bool = True,
|
||||
interval_type: Literal["years", "months", "days"] = "years",
|
||||
interval_type: Literal['years', 'months', 'days'] = 'years',
|
||||
interval_value: int = 1,
|
||||
date_format: str = None,
|
||||
date_format: str = None
|
||||
) -> float:
|
||||
"""Method to calculate returns for a certain time-period as on a particular date
|
||||
|
||||
@ -219,12 +153,6 @@ class TimeSeries(TimeSeriesCore):
|
||||
The mode of matching the closest date.
|
||||
Valid values are 'exact', 'previous', 'next' and next.
|
||||
|
||||
closest_max_days: int, default -1
|
||||
The maximum acceptable gap between the provided date arguments and actual date.
|
||||
Pass -1 for no limit.
|
||||
Note: There's a hard max limit of 1000 days due to Python's limits on recursion.
|
||||
This can be overridden by importing the sys module.
|
||||
|
||||
if_not_found : 'fail' | 'nan'
|
||||
What to do when required date is not found:
|
||||
* fail: Raise a ValueError
|
||||
@ -257,18 +185,17 @@ class TimeSeries(TimeSeriesCore):
|
||||
Example
|
||||
--------
|
||||
>>> calculate_returns(datetime.date(2020, 1, 1), years=1)
|
||||
(datetime.datetime(2020, 1, 1, 0, 0), .0567)
|
||||
"""
|
||||
|
||||
as_on = _parse_date(as_on, date_format)
|
||||
as_on_delta, prior_delta = _preprocess_match_options(as_on_match, prior_match, closest)
|
||||
|
||||
prev_date = as_on - relativedelta(**{interval_type: interval_value})
|
||||
current = _find_closest_date(self.data, as_on, closest_max_days, as_on_delta, if_not_found)
|
||||
previous = _find_closest_date(self.data, prev_date, closest_max_days, prior_delta, if_not_found)
|
||||
current = _find_closest_date(self.data, as_on, as_on_delta, if_not_found)
|
||||
previous = _find_closest_date(self.data, prev_date, prior_delta, if_not_found)
|
||||
|
||||
if current[1] == str("nan") or previous[1] == str("nan"):
|
||||
return as_on, float("NaN")
|
||||
if current[1] == str('nan') or previous[1] == str('nan'):
|
||||
return as_on, float('NaN')
|
||||
|
||||
returns = current[1] / previous[1]
|
||||
if compounding:
|
||||
@ -280,81 +207,17 @@ class TimeSeries(TimeSeriesCore):
|
||||
self,
|
||||
from_date: Union[datetime.date, str],
|
||||
to_date: Union[datetime.date, str],
|
||||
frequency: Literal["D", "W", "M", "Q", "H", "Y"] = None,
|
||||
frequency: str = None,
|
||||
as_on_match: str = "closest",
|
||||
prior_match: str = "closest",
|
||||
closest: Literal["previous", "next", "exact"] = "previous",
|
||||
if_not_found: Literal["fail", "nan"] = "fail",
|
||||
closest: str = "previous",
|
||||
if_not_found: Literal['fail', 'nan'] = 'fail',
|
||||
compounding: bool = True,
|
||||
interval_type: Literal["years", "months", "days"] = "years",
|
||||
interval_type: Literal['years', 'months', 'days'] = 'years',
|
||||
interval_value: int = 1,
|
||||
date_format: str = None,
|
||||
) -> TimeSeries:
|
||||
"""Calculate the returns on a rolling basis.
|
||||
This is a wrapper function around the calculate_returns function.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
from_date : datetime.date | str
|
||||
Start date for the return calculation.
|
||||
|
||||
to_date : datetime.date | str
|
||||
End date for the returns calculation.
|
||||
|
||||
frequency : str, optional
|
||||
Frequency at which the returns should be calcualated.
|
||||
Valid values are {D, W, M, Q, H, Y}
|
||||
|
||||
as_on_match : str, optional
|
||||
The match mode to be used for the as on date.
|
||||
If not specified, the value for the closes parameter will be used.
|
||||
|
||||
prior_match : str, optional
|
||||
The match mode to be used for the prior date, i.e., the date against which the return will be calculated.
|
||||
If not specified, the value for the closes parameter will be used.
|
||||
|
||||
closest : previous | next | exact
|
||||
The default match mode for dates.
|
||||
* Previous: look for the immediate previous available date
|
||||
* Next: look for the immediate next available date
|
||||
* Exact: Only look for the exact date passed in the input
|
||||
|
||||
if_not_found : fail | nan
|
||||
Specifies what should be done if the date is not found.
|
||||
* fail: raise a DateNotFoundError.
|
||||
* nan: return nan as the value.
|
||||
Note, this will return float('NaN') and not 'nan' as string.
|
||||
|
||||
Note, this function will always raise an error if it is not possible to find a matching date.`
|
||||
For instance, if the input date is before the starting of the first date of the time series,
|
||||
but match mode is set to previous. A DateOutOfRangeError will be raised in such cases.
|
||||
|
||||
compounding : bool, optional
|
||||
Should the returns be compounded annually.
|
||||
|
||||
interval_type : years | month | days
|
||||
The interval for the return calculation.
|
||||
|
||||
interval_value : int, optional
|
||||
The value of the interval for return calculation.
|
||||
|
||||
date_format : str, optional
|
||||
A datetime library compatible format string.
|
||||
If not specified, will use the setting in FincalOptions.date_format.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Returs the rolling returns as a TimeSeries object.
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
- If an invalid argument is passed for frequency parameter.
|
||||
|
||||
See also
|
||||
--------
|
||||
TimeSeries.calculate_returns
|
||||
"""
|
||||
date_format: str = None
|
||||
) -> List[tuple]:
|
||||
"""Calculates the rolling return"""
|
||||
|
||||
from_date = _parse_date(from_date, date_format)
|
||||
to_date = _parse_date(to_date, date_format)
|
||||
@ -381,7 +244,7 @@ class TimeSeries(TimeSeriesCore):
|
||||
as_on_match=as_on_match,
|
||||
prior_match=prior_match,
|
||||
closest=closest,
|
||||
if_not_found=if_not_found,
|
||||
if_not_found=if_not_found
|
||||
)
|
||||
rolling_returns.append(returns)
|
||||
rolling_returns.sort()
|
||||
|
@ -2,7 +2,7 @@ import datetime
|
||||
from dataclasses import dataclass
|
||||
from typing import Iterable, List, Literal, Mapping, Sequence, Tuple, Union
|
||||
|
||||
from .exceptions import DateNotFoundError, DateOutOfRangeError
|
||||
from .exceptions import DateNotFoundError
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -85,20 +85,15 @@ def _preprocess_match_options(as_on_match: str, prior_match: str, closest: str)
|
||||
return as_on_delta, prior_delta
|
||||
|
||||
|
||||
def _find_closest_date(data, date, limit_days, delta, if_not_found):
|
||||
def _find_closest_date(data, date, delta, if_not_found):
|
||||
"""Helper function to find data for the closest available date"""
|
||||
|
||||
if delta.days < 0 and date < min(data):
|
||||
raise DateOutOfRangeError(date, 'min')
|
||||
if delta.days > 0 and date > max(data):
|
||||
raise DateOutOfRangeError(date, 'max')
|
||||
|
||||
row = data.get(date, None)
|
||||
if row is not None:
|
||||
return date, row
|
||||
|
||||
if delta and limit_days != 0:
|
||||
return _find_closest_date(data, date + delta, limit_days-1, delta, if_not_found)
|
||||
if delta:
|
||||
return _find_closest_date(data, date + delta, delta, if_not_found)
|
||||
|
||||
if if_not_found == "fail":
|
||||
raise DateNotFoundError("Data not found for date", date)
|
||||
|
Loading…
Reference in New Issue
Block a user