PyFacts/fincal/fincal.py

365 lines
12 KiB
Python
Raw Normal View History

import datetime
2022-02-17 16:57:22 +00:00
from dataclasses import dataclass
from typing import Dict, Iterable, List, Literal, Tuple, Union
2022-02-17 10:50:48 +00:00
from dateutil.relativedelta import relativedelta
2022-02-17 16:57:22 +00:00
@dataclass
class Options:
date_format: str = '%Y-%m-%d'
closest: str = 'before' # after
@dataclass(frozen=True)
2022-02-17 16:57:22 +00:00
class Frequency:
name: str
freq_type: str
value: int
days: int
2022-02-17 16:57:22 +00:00
class AllFrequencies:
D = Frequency('daily', 'days', 1, 1)
W = Frequency('weekly', 'days', 7, 7)
M = Frequency('monthly', 'months', 1, 30)
Q = Frequency('quarterly', 'months', 3, 91)
H = Frequency('half-yearly', 'months', 6, 182)
Y = Frequency('annual', 'years', 1, 365)
def create_date_series(
start_date: datetime.datetime,
end_date: datetime.datetime,
frequency: Frequency
) -> List[datetime.datetime]:
"""Creates a date series using a frequency"""
print(f"{start_date=}, {end_date=}")
datediff = (end_date - start_date).days/frequency.days+1
dates = []
for i in range(0, int(datediff)):
diff = {frequency.freq_type: frequency.value*i}
2022-02-17 16:57:22 +00:00
dates.append(start_date + relativedelta(**diff))
return dates
def _preprocess_timeseries(
data: Union[
List[Iterable[Union[str, datetime.datetime, float]]],
List[Dict[str, Union[float, datetime.datetime]]],
List[Dict[Union[str, datetime.datetime], float]],
Dict[Union[str, datetime.datetime], float]
],
date_format: str
) -> List[Tuple[datetime.datetime, float]]:
"""Converts any type of list to the correct type"""
if isinstance(data, list):
if isinstance(data[0], dict):
if len(data[0].keys()) == 2:
current_data = [tuple(i.values()) for i in data]
elif len(data[0].keys()) == 1:
current_data = [tuple(*i.items()) for i in data]
else:
raise TypeError("Could not parse the data")
current_data = _preprocess_timeseries(current_data, date_format)
elif isinstance(data[0], Iterable):
if isinstance(data[0][0], str):
current_data = []
for i in data:
row = datetime.datetime.strptime(i[0], date_format), i[1]
current_data.append(row)
elif isinstance(data[0][0], datetime.datetime):
current_data = [(i, j) for i, j in data]
else:
raise TypeError("Could not parse the data")
else:
raise TypeError("Could not parse the data")
elif isinstance(data, dict):
current_data = [(k, v) for k, v in data.items()]
current_data = _preprocess_timeseries(current_data, date_format)
else:
raise TypeError("Could not parse the data")
current_data.sort()
return current_data
def _preprocess_match_options(as_on_match: str, prior_match: str, closest: str) -> datetime.timedelta:
"""Checks the arguments and returns appropriate timedelta objects"""
deltas = {'exact': 0, 'previous': -1, 'next': 1}
if closest not in deltas.keys():
raise ValueError(f"Invalid closest argument: {closest}")
as_on_match = closest if as_on_match == 'closest' else as_on_match
prior_match = closest if prior_match == 'closest' else prior_match
if as_on_match in deltas.keys():
as_on_delta = datetime.timedelta(days=deltas[as_on_match])
else:
raise ValueError(f"Invalid as_on_match argument: {as_on_match}")
if prior_match in deltas.keys():
prior_delta = datetime.timedelta(days=deltas[prior_match])
else:
raise ValueError(f"Invalid prior_match argument: {prior_match}")
return as_on_delta, prior_delta
class TimeSeriesCore:
"""Defines the core building blocks of a TimeSeries object"""
2022-02-17 10:50:48 +00:00
def __init__(
self,
data: List[Iterable],
date_format: str = "%Y-%m-%d",
frequency=Literal['D', 'W', 'M', 'Q', 'H', 'Y']
):
2022-02-17 10:50:48 +00:00
"""Instantiate a TimeSeries object
Parameters
----------
data : List[tuple]
Time Series data in the form of list of tuples.
The first element of each tuple should be a date and second element should be a value.
date_format : str, optional, default "%Y-%m-%d"
Specify the format of the date
Required only if the first argument of tuples is a string. Otherwise ignored.
frequency : str, optional, default "infer"
The frequency of the time series. Default is infer.
The class will try to infer the frequency automatically and adjust to the closest member.
Note that inferring frequencies can fail if the data is too irregular.
Valid values are {D, W, M, Q, H, Y}
"""
data = _preprocess_timeseries(data, date_format=date_format)
self.time_series = dict(data)
2022-02-17 10:50:48 +00:00
self.dates = set(list(self.time_series))
if len(self.dates) != len(data):
2022-02-17 10:50:48 +00:00
print("Warning: The input data contains duplicate dates which have been ignored.")
self.start_date = list(self.time_series)[0]
self.end_date = list(self.time_series)[-1]
2022-02-17 16:57:22 +00:00
self.frequency = getattr(AllFrequencies, frequency)
2022-02-17 10:50:48 +00:00
def __repr__(self):
if len(self.time_series) > 6:
2022-02-17 10:50:48 +00:00
printable_data_1 = list(self.time_series)[:3]
printable_data_2 = list(self.time_series)[-3:]
printable_str = "TimeSeries([{}\n\t...\n\t{}])".format(
',\n\t'.join([str((i, self.time_series[i])) for i in printable_data_1]),
',\n\t'.join([str((i, self.time_series[i])) for i in printable_data_2])
2022-02-17 10:50:48 +00:00
)
else:
printable_data = self.time_series
2022-02-17 10:50:48 +00:00
printable_str = "TimeSeries([{}])".format(',\n\t'.join(
[str((i, self.time_series[i])) for i in printable_data]))
return printable_str
def __str__(self):
if len(self.time_series) > 6:
2022-02-17 10:50:48 +00:00
printable_data_1 = list(self.time_series)[:3]
printable_data_2 = list(self.time_series)[-3:]
printable_str = "[{}\n ...\n {}]".format(
',\n '.join([str((i, self.time_series[i])) for i in printable_data_1]),
',\n '.join([str((i, self.time_series[i])) for i in printable_data_2])
2022-02-17 10:50:48 +00:00
)
else:
printable_data = self.time_series
printable_str = "[{}]".format(',\n '.join([str((i, self.time_series[i])) for i in printable_data]))
return printable_str
def __getitem__(self, n):
all_keys = list(self.time_series.keys())
if isinstance(n, int):
keys = [all_keys[n]]
else:
keys = all_keys[n]
item = [(key, self.time_series[key]) for key in keys]
if len(item) == 1:
return item[0]
return item
def __len__(self):
return len(self.time_series.keys())
def head(self, n: int = 6):
keys = list(self.time_series.keys())
keys = keys[:n]
result = [(key, self.time_series[key]) for key in keys]
return result
def tail(self, n: int = 6):
keys = list(self.time_series.keys())
keys = keys[-n:]
2022-02-19 10:13:52 +00:00
result = [(key, self.time_series[key]) for key in keys]
return result
class TimeSeries(TimeSeriesCore):
"""Container for TimeSeries objects"""
2022-02-17 10:50:48 +00:00
def info(self):
"""Summary info about the TimeSeries object"""
total_dates = len(self.time_series.keys())
res_string = "First date: {}\nLast date: {}\nNumber of rows: {}"
return res_string.format(self.start_date, self.end_date, total_dates)
def ffill(self, inplace=False):
num_days = (self.end_date - self.start_date).days + 1
new_ts = dict()
for i in range(num_days):
cur_date = self.start_date + datetime.timedelta(days=i)
try:
cur_val = self.time_series[cur_date]
except KeyError:
pass
new_ts.update({cur_date: cur_val})
2022-02-17 10:50:48 +00:00
if inplace:
self.time_series = new_ts
return None
return new_ts
def bfill(self, inplace=False):
num_days = (self.end_date - self.start_date).days + 1
new_ts = dict()
for i in range(num_days):
cur_date = self.end_date - datetime.timedelta(days=i)
try:
cur_val = self.time_series[cur_date]
except KeyError:
pass
new_ts.update({cur_date: cur_val})
2022-02-17 10:50:48 +00:00
if inplace:
self.time_series = new_ts
return None
return dict(reversed(new_ts.items()))
def calculate_returns(
self,
as_on: datetime.datetime,
as_on_match: str = 'closest',
prior_match: str = 'closest',
closest: str = "previous",
compounding: bool = True,
years: int = 1
) -> float:
"""Method to calculate returns for a certain time-period as on a particular date
Parameters
----------
as_on : datetime.datetime
The date as on which the return is to be calculated.
as_on_match : str, optional
The mode of matching the as_on_date. Refer closest.
prior_match : str, optional
The mode of matching the prior_date. Refer closest.
closest : str, optional
The mode of matching the closest date.
Valid values are 'exact', 'previous', 'next' and next.
compounding : bool, optional
Whether the return should be compounded annually.
years : int, optional
number of years for which the returns should be calculated
Returns
-------
The float value of the returns.
Raises
------
ValueError
* If match mode for any of the dates is exact and the exact match is not found
* If the arguments passsed for closest, as_on_match, and prior_match are invalid
Example
--------
2022-02-17 10:50:48 +00:00
>>> calculate_returns(datetime.date(2020, 1, 1), years=1)
"""
as_on_delta, prior_delta = _preprocess_match_options(as_on_match, prior_match, closest)
while True:
current = self.time_series.get(as_on, None)
if current is not None:
break
elif not as_on_delta:
raise ValueError("As on date not found")
as_on += as_on_delta
2022-02-17 10:50:48 +00:00
prev_date = as_on - relativedelta(years=years)
2022-02-17 10:50:48 +00:00
while True:
previous = self.time_series.get(prev_date, None)
if previous is not None:
2022-02-17 10:50:48 +00:00
break
elif not prior_delta:
raise ValueError("Previous date not found")
prev_date += prior_delta
2022-02-17 10:50:48 +00:00
returns = current / previous
if compounding:
2022-02-17 10:50:48 +00:00
returns = returns ** (1 / years)
return returns - 1
def calculate_rolling_returns(
self,
from_date: datetime.date,
to_date: datetime.date,
2022-02-19 04:09:37 +00:00
frequency: str = "D",
as_on_match: str = 'closest',
prior_match: str = 'closest',
2022-02-17 10:50:48 +00:00
closest: str = "previous",
compounding: bool = True,
2022-02-17 10:50:48 +00:00
years: int = 1,
) -> List[tuple]:
"""Calculates the rolling return"""
all_dates = create_date_series(from_date, to_date, getattr(AllFrequencies, frequency))
dates = set(all_dates)
if frequency == AllFrequencies.D:
dates = all_dates.intersection(self.dates)
rolling_returns = []
for i in dates:
returns = self.calculate_returns(as_on=i, compounding=compounding, years=years, as_on_match=as_on_match,
prior_match=prior_match, closest=closest)
rolling_returns.append((i, returns))
self.rolling_returns = rolling_returns
return self.rolling_returns
2022-02-17 16:57:22 +00:00
if __name__ == '__main__':
date_series = [
datetime.datetime(2020, 1, 1),
datetime.datetime(2020, 1, 2),
datetime.datetime(2020, 1, 3),
datetime.datetime(2020, 1, 4),
datetime.datetime(2020, 1, 7),
datetime.datetime(2020, 1, 8),
datetime.datetime(2020, 1, 9),
datetime.datetime(2020, 1, 10),
datetime.datetime(2020, 1, 12),
]