PyFacts/fincal/fincal.py

224 lines
7.7 KiB
Python
Raw Normal View History

import datetime
2022-02-17 16:57:22 +00:00
from dataclasses import dataclass
from typing import List
2022-02-17 10:50:48 +00:00
from dateutil.relativedelta import relativedelta
2022-02-17 16:57:22 +00:00
@dataclass
class Options:
date_format: str = '%Y-%m-%d'
closest: str = 'before' # after
class Frequency:
def __init__(self, name, interval_type, interval_value, interval_days_value):
self.name = name
self.type = interval_type
self.value = interval_value
self.days = interval_days_value
def __repr__(self):
return f"Frequency({self.name}, {self.type}, {self.value}, {self.days})"
class AllFrequencies:
D = Frequency('daily', 'days', 1, 1)
W = Frequency('weekly', 'days', 7, 7)
M = Frequency('monthly', 'months', 1, 30)
Q = Frequency('quarterly', 'months', 3, 91)
H = Frequency('half-yearly', 'months', 6, 182)
Y = Frequency('annual', 'years', 1, 365)
def create_date_series(
start_date: datetime.datetime,
end_date: datetime.datetime,
frequency: Frequency
) -> List[datetime.datetime]:
"""Creates a date series using a frequency"""
print(f"{start_date=}, {end_date=}")
datediff = (end_date - start_date).days/frequency.days+1
dates = []
for i in range(0, int(datediff)):
diff = {frequency.type: frequency.value*i}
dates.append(start_date + relativedelta(**diff))
return dates
class TimeSeries:
2022-02-17 10:50:48 +00:00
"""Container for TimeSeries objects"""
2022-02-17 16:57:22 +00:00
def __init__(self, data: List[tuple], date_format: str = "%Y-%m-%d", frequency="D"):
2022-02-17 10:50:48 +00:00
"""Instantiate a TimeSeries object
Parameters
----------
data : List[tuple]
Time Series data in the form of list of tuples.
The first element of each tuple should be a date and second element should be a value.
date_format : str, optional, default "%Y-%m-%d"
Specify the format of the date
Required only if the first argument of tuples is a string. Otherwise ignored.
frequency : str, optional, default "infer"
The frequency of the time series. Default is infer.
The class will try to infer the frequency automatically and adjust to the closest member.
Note that inferring frequencies can fail if the data is too irregular.
Valid values are {D, W, M, Q, H, Y}
"""
time_series = [(datetime.datetime.strptime(i[0], date_format), i[1]) for i in data]
time_series.sort()
self.time_series = dict(time_series)
self.dates = set(list(self.time_series))
if len(self.dates) != len(time_series):
print("Warning: The input data contains duplicate dates which have been ignored.")
self.start_date = list(self.time_series)[0]
self.end_date = list(self.time_series)[-1]
2022-02-17 16:57:22 +00:00
self.frequency = getattr(AllFrequencies, frequency)
2022-02-17 10:50:48 +00:00
def __repr__(self):
if len(self.time_series) > 6:
2022-02-17 10:50:48 +00:00
printable_data_1 = list(self.time_series)[:3]
printable_data_2 = list(self.time_series)[-3:]
printable_str = "TimeSeries([{}\n\t...\n\t{}])".format(
2022-02-17 10:50:48 +00:00
',\n\t'.join([str({i: self.time_series[i]}) for i in printable_data_1]),
',\n\t'.join([str({i: self.time_series[i]}) for i in printable_data_2])
)
else:
printable_data = self.time_series
2022-02-17 10:50:48 +00:00
printable_str = "TimeSeries([{}])".format(',\n\t'.join(
[str({i: self.time_series[i]}) for i in printable_data]))
return printable_str
def __str__(self):
if len(self.time_series) > 6:
2022-02-17 10:50:48 +00:00
printable_data_1 = list(self.time_series)[:3]
printable_data_2 = list(self.time_series)[-3:]
printable_str = "[{}\n ...\n {}]".format(
2022-02-17 10:50:48 +00:00
',\n '.join([str({i: self.time_series[i]}) for i in printable_data_1]),
',\n '.join([str({i: self.time_series[i]}) for i in printable_data_2])
)
else:
printable_data = self.time_series
2022-02-17 10:50:48 +00:00
printable_str = "[{}]".format(',\n '.join([str({i: self.time_series[i]}) for i in printable_data]))
return printable_str
2022-02-17 10:50:48 +00:00
def info(self):
"""Summary info about the TimeSeries object"""
total_dates = len(self.time_series.keys())
res_string = "First date: {}\nLast date: {}\nNumber of rows: {}"
return res_string.format(self.start_date, self.end_date, total_dates)
def ffill(self, inplace=False):
num_days = (self.end_date - self.start_date).days + 1
new_ts = dict()
for i in range(num_days):
cur_date = self.start_date + datetime.timedelta(days=i)
try:
cur_val = self.time_series[cur_date]
except KeyError:
pass
2022-02-17 16:57:22 +00:00
new_ts.update({cur_date: cur_val}) # type: ignore
2022-02-17 10:50:48 +00:00
if inplace:
self.time_series = new_ts
return None
return new_ts
def bfill(self, inplace=False):
num_days = (self.end_date - self.start_date).days + 1
new_ts = dict()
for i in range(num_days):
cur_date = self.end_date - datetime.timedelta(days=i)
try:
cur_val = self.time_series[cur_date]
except KeyError:
pass
2022-02-17 16:57:22 +00:00
new_ts.update({cur_date: cur_val}) # type: ignore
2022-02-17 10:50:48 +00:00
if inplace:
self.time_series = new_ts
return None
return dict(reversed(new_ts.items()))
def calculate_returns(
2022-02-17 10:50:48 +00:00
self, as_on: datetime.datetime, closest: str = "previous", compounding: bool = True, years: int = 1
) -> int:
"""Method to calculate returns for a certain time-period as on a particular date
2022-02-17 10:50:48 +00:00
>>> calculate_returns(datetime.date(2020, 1, 1), years=1)
"""
2022-02-17 10:50:48 +00:00
try:
current = self.time_series[as_on]
except KeyError:
raise ValueError("As on date not found")
2022-02-17 10:50:48 +00:00
prev_date = as_on - relativedelta(years=years)
if closest == "previous":
delta = -1
elif closest == "next":
delta = 1
else:
raise ValueError(f"Invalid value for closes parameter: {closest}")
while True:
try:
previous = self.time_series[prev_date]
break
except KeyError:
prev_date = prev_date + relativedelta(days=delta)
2022-02-17 10:50:48 +00:00
returns = current / previous
if compounding:
2022-02-17 10:50:48 +00:00
returns = returns ** (1 / years)
return returns - 1
def calculate_rolling_returns(
self,
from_date: datetime.date,
to_date: datetime.date,
2022-02-17 10:50:48 +00:00
frequency: str = "d",
closest: str = "previous",
compounding: bool = True,
2022-02-17 10:50:48 +00:00
years: int = 1,
) -> List[tuple]:
"""Calculates the rolling return"""
datediff = (to_date - from_date).days
2022-02-17 10:50:48 +00:00
all_dates = set()
for i in range(datediff):
2022-02-17 10:50:48 +00:00
all_dates.add(from_date + datetime.timedelta(days=i))
dates = all_dates.intersection(self.dates)
rolling_returns = []
for i in dates:
returns = self.calculate_returns(as_on=i, compounding=compounding, years=years, closest=closest)
rolling_returns.append((i, returns))
self.rolling_returns = rolling_returns
return self.rolling_returns
2022-02-17 16:57:22 +00:00
if __name__ == '__main__':
date_series = [
datetime.datetime(2020, 1, 1),
datetime.datetime(2020, 1, 2),
datetime.datetime(2020, 1, 3),
datetime.datetime(2020, 1, 4),
datetime.datetime(2020, 1, 7),
datetime.datetime(2020, 1, 8),
datetime.datetime(2020, 1, 9),
datetime.datetime(2020, 1, 10),
datetime.datetime(2020, 1, 12),
]