Compare commits
2 Commits
da2993ebf0
...
a6fcd29a34
Author | SHA1 | Date | |
---|---|---|---|
a6fcd29a34 | |||
8117986742 |
@ -882,3 +882,49 @@ class TimeSeriesCore:
|
||||
def update(self, items: dict):
|
||||
for k, v in items.items():
|
||||
self[k] = v
|
||||
|
||||
def to_dict(self, date_as_string: bool = False, string_date_format: str = "default") -> dict:
|
||||
"""Convert time series to a dictionary
|
||||
|
||||
Parameters
|
||||
----------
|
||||
date_as_string: boolean, default False
|
||||
Whether date should be converted to string.
|
||||
If False, then the output will contain datetime.datetime objects
|
||||
|
||||
string_date_format: datetime library compatible format string
|
||||
If date is to be output as string, pass the format here.
|
||||
If it is left as default, the format set in fincal_options will be used.
|
||||
"""
|
||||
|
||||
if not date_as_string:
|
||||
return self.data
|
||||
|
||||
if string_date_format == "default":
|
||||
string_date_format = FincalOptions.date_format
|
||||
|
||||
data = {datetime.datetime.strftime(dt, string_date_format): val for dt, val in self.data.items()}
|
||||
return data
|
||||
|
||||
def to_list(self, date_as_string: bool = False, string_date_format: str = "default") -> List[tuple]:
|
||||
"""Convert time series to a list of tuples
|
||||
|
||||
Parameters
|
||||
----------
|
||||
date_as_string: boolean, optional
|
||||
Whether date should be converted to string.
|
||||
If False, then the output will contain datetime.datetime objects
|
||||
|
||||
string_date_format : str, optional
|
||||
If date is to be output as string, pass the format here.
|
||||
If it is left as default, the format set in fincal_options will be used.
|
||||
"""
|
||||
|
||||
if not date_as_string:
|
||||
return list(self.data.items())
|
||||
|
||||
if string_date_format == "default":
|
||||
string_date_format = FincalOptions.date_format
|
||||
|
||||
data = [(datetime.datetime.strftime(dt, string_date_format), val) for dt, val in self.data.items()]
|
||||
return data
|
||||
|
@ -216,6 +216,7 @@ def beta(
|
||||
return beta
|
||||
|
||||
|
||||
@date_parser(4, 5)
|
||||
def jensens_alpha(
|
||||
asset_data: TimeSeries,
|
||||
market_data: TimeSeries,
|
||||
@ -346,3 +347,109 @@ def jensens_alpha(
|
||||
|
||||
jensens_alpha = realized_return[1] - risk_free_rate + beta_value * (market_return[1] - risk_free_rate)
|
||||
return jensens_alpha
|
||||
|
||||
|
||||
@date_parser(2, 3)
|
||||
def correlation(
|
||||
data1: TimeSeries,
|
||||
data2: TimeSeries,
|
||||
from_date: str | datetime.datetime = None,
|
||||
to_date: str | datetime.datetime = None,
|
||||
frequency: Literal["D", "W", "M", "Q", "H", "Y"] = None,
|
||||
return_period_unit: Literal["years", "months", "days"] = "years",
|
||||
return_period_value: int = 1,
|
||||
as_on_match: str = "closest",
|
||||
prior_match: str = "closest",
|
||||
closest: Literal["previous", "next"] = "previous",
|
||||
date_format: str = None,
|
||||
) -> float:
|
||||
"""Calculate the correlation between two assets
|
||||
|
||||
correlation calculation is done based on rolling returns.
|
||||
It must be noted that correlation is not calculated directly on the asset prices.
|
||||
The asset prices used to calculate returns and correlation is then calculated based on these returns.
|
||||
Hence this function requires all parameters for rolling returns calculations.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data1: TimeSeries
|
||||
The first time series data
|
||||
|
||||
data2: TimeSeries
|
||||
The second time series data
|
||||
|
||||
from_date:
|
||||
Start date from which returns should be calculated.
|
||||
Defaults to the first date of the series.
|
||||
|
||||
to_date:
|
||||
End date till which returns should be calculated.
|
||||
Defaults to the last date of the series.
|
||||
|
||||
frequency:
|
||||
The frequency at which returns should be calculated.
|
||||
|
||||
return_period_unit: 'years', 'months', 'days'
|
||||
The type of time period to use for return calculation.
|
||||
|
||||
return_period_value: int
|
||||
The value of the specified interval type over which returns needs to be calculated.
|
||||
|
||||
as_on_match: str, optional
|
||||
The mode of matching the as_on_date. Refer closest.
|
||||
|
||||
prior_match: str, optional
|
||||
The mode of matching the prior_date. Refer closest.
|
||||
|
||||
closest: str, optional
|
||||
The mode of matching the closest date.
|
||||
Valid values are 'exact', 'previous', 'next' and next.
|
||||
|
||||
The date format to use for this operation.
|
||||
Should be passed as a datetime library compatible string.
|
||||
Sets the date format only for this operation. To set it globally, use FincalOptions.date_format
|
||||
|
||||
Returns
|
||||
-------
|
||||
The value of beta as a float.
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError:
|
||||
* If frequency of both TimeSeries do not match
|
||||
* If both time series do not have data between the from date and to date
|
||||
"""
|
||||
interval_years = _interval_to_years(return_period_unit, return_period_value)
|
||||
interval_days = int(interval_years * 365 + 1)
|
||||
|
||||
annual_compounded_returns = True if interval_years > 1 else False
|
||||
|
||||
if from_date is None:
|
||||
from_date = data1.start_date + datetime.timedelta(days=interval_days)
|
||||
if to_date is None:
|
||||
to_date = data1.end_date
|
||||
|
||||
if data1.frequency != data2.frequency:
|
||||
raise ValueError("Correlation calculation requires both time series to be of same frequency")
|
||||
|
||||
if from_date < data2.start_date or to_date > data2.end_date:
|
||||
raise ValueError("Data between from_date and to_date must be present in both time series")
|
||||
|
||||
common_params = {
|
||||
"from_date": from_date,
|
||||
"to_date": to_date,
|
||||
"frequency": frequency,
|
||||
"return_period_unit": return_period_unit,
|
||||
"return_period_value": return_period_value,
|
||||
"as_on_match": as_on_match,
|
||||
"prior_match": prior_match,
|
||||
"closest": closest,
|
||||
"date_format": date_format,
|
||||
"annual_compounded_returns": annual_compounded_returns,
|
||||
}
|
||||
|
||||
asset_rr = data1.calculate_rolling_returns(**common_params)
|
||||
market_rr = data2.calculate_rolling_returns(**common_params)
|
||||
|
||||
cor = statistics.correlation(asset_rr.values, market_rr.values)
|
||||
return cor
|
||||
|
Loading…
Reference in New Issue
Block a user