Added correlation function

This commit is contained in:
Gourav Kumar 2022-06-04 22:33:09 +05:30
parent da2993ebf0
commit 8117986742

View File

@ -57,19 +57,19 @@ def sharpe_ratio(
frequency:
The frequency at which returns should be calculated.
return_period_unit : 'years', 'months', 'days'
return_period_unit: 'years', 'months', 'days'
The type of time period to use for return calculation.
return_period_value : int
return_period_value: int
The value of the specified interval type over which returns needs to be calculated.
as_on_match : str, optional
as_on_match: str, optional
The mode of matching the as_on_date. Refer closest.
prior_match : str, optional
prior_match: str, optional
The mode of matching the prior_date. Refer closest.
closest : str, optional
closest: str, optional
The mode of matching the closest date.
Valid values are 'exact', 'previous', 'next' and next.
@ -142,10 +142,10 @@ def beta(
Parameters
----------
asset_data : TimeSeries
asset_data: TimeSeries
The time series data of the asset
market_data : TimeSeries
market_data: TimeSeries
The time series data of the relevant market index
from_date:
@ -159,19 +159,19 @@ def beta(
frequency:
The frequency at which returns should be calculated.
return_period_unit : 'years', 'months', 'days'
return_period_unit: 'years', 'months', 'days'
The type of time period to use for return calculation.
return_period_value : int
return_period_value: int
The value of the specified interval type over which returns needs to be calculated.
as_on_match : str, optional
as_on_match: str, optional
The mode of matching the as_on_date. Refer closest.
prior_match : str, optional
prior_match: str, optional
The mode of matching the prior_date. Refer closest.
closest : str, optional
closest: str, optional
The mode of matching the closest date.
Valid values are 'exact', 'previous', 'next' and next.
@ -216,6 +216,7 @@ def beta(
return beta
@date_parser(4, 5)
def jensens_alpha(
asset_data: TimeSeries,
market_data: TimeSeries,
@ -243,10 +244,10 @@ def jensens_alpha(
Parameters
----------
asset_data : TimeSeries
asset_data: TimeSeries
The time series data of the asset
market_data : TimeSeries
market_data: TimeSeries
The time series data of the relevant market index
risk_free_data:
@ -270,19 +271,19 @@ def jensens_alpha(
frequency:
The frequency at which returns should be calculated.
return_period_unit : 'years', 'months', 'days'
return_period_unit: 'years', 'months', 'days'
The type of time period to use for return calculation.
return_period_value : int
return_period_value: int
The value of the specified interval type over which returns needs to be calculated.
as_on_match : str, optional
as_on_match: str, optional
The mode of matching the as_on_date. Refer closest.
prior_match : str, optional
prior_match: str, optional
The mode of matching the prior_date. Refer closest.
closest : str, optional
closest: str, optional
The mode of matching the closest date.
Valid values are 'exact', 'previous', 'next' and next.
@ -346,3 +347,109 @@ def jensens_alpha(
jensens_alpha = realized_return[1] - risk_free_rate + beta_value * (market_return[1] - risk_free_rate)
return jensens_alpha
@date_parser(2, 3)
def correlation(
data1: TimeSeries,
data2: TimeSeries,
from_date: str | datetime.datetime = None,
to_date: str | datetime.datetime = None,
frequency: Literal["D", "W", "M", "Q", "H", "Y"] = None,
return_period_unit: Literal["years", "months", "days"] = "years",
return_period_value: int = 1,
as_on_match: str = "closest",
prior_match: str = "closest",
closest: Literal["previous", "next"] = "previous",
date_format: str = None,
) -> float:
"""Calculate the correlation between two assets
correlation calculation is done based on rolling returns.
It must be noted that correlation is not calculated directly on the asset prices.
The asset prices used to calculate returns and correlation is then calculated based on these returns.
Hence this function requires all parameters for rolling returns calculations.
Parameters
----------
data1: TimeSeries
The first time series data
data2: TimeSeries
The second time series data
from_date:
Start date from which returns should be calculated.
Defaults to the first date of the series.
to_date:
End date till which returns should be calculated.
Defaults to the last date of the series.
frequency:
The frequency at which returns should be calculated.
return_period_unit: 'years', 'months', 'days'
The type of time period to use for return calculation.
return_period_value: int
The value of the specified interval type over which returns needs to be calculated.
as_on_match: str, optional
The mode of matching the as_on_date. Refer closest.
prior_match: str, optional
The mode of matching the prior_date. Refer closest.
closest: str, optional
The mode of matching the closest date.
Valid values are 'exact', 'previous', 'next' and next.
The date format to use for this operation.
Should be passed as a datetime library compatible string.
Sets the date format only for this operation. To set it globally, use FincalOptions.date_format
Returns
-------
The value of beta as a float.
Raises
------
ValueError:
* If frequency of both TimeSeries do not match
* If both time series do not have data between the from date and to date
"""
interval_years = _interval_to_years(return_period_unit, return_period_value)
interval_days = int(interval_years * 365 + 1)
annual_compounded_returns = True if interval_years > 1 else False
if from_date is None:
from_date = data1.start_date + datetime.timedelta(days=interval_days)
if to_date is None:
to_date = data1.end_date
if data1.frequency != data2.frequency:
raise ValueError("Correlation calculation requires both time series to be of same frequency")
if from_date < data2.start_date or to_date > data2.end_date:
raise ValueError("Data between from_date and to_date must be present in both time series")
common_params = {
"from_date": from_date,
"to_date": to_date,
"frequency": frequency,
"return_period_unit": return_period_unit,
"return_period_value": return_period_value,
"as_on_match": as_on_match,
"prior_match": prior_match,
"closest": closest,
"date_format": date_format,
"annual_compounded_returns": annual_compounded_returns,
}
asset_rr = data1.calculate_rolling_returns(**common_params)
market_rr = data2.calculate_rolling_returns(**common_params)
cor = statistics.correlation(asset_rr.values, market_rr.values)
return cor