Compare commits
2 Commits
da2993ebf0
...
a6fcd29a34
Author | SHA1 | Date | |
---|---|---|---|
a6fcd29a34 | |||
8117986742 |
@ -882,3 +882,49 @@ class TimeSeriesCore:
|
|||||||
def update(self, items: dict):
|
def update(self, items: dict):
|
||||||
for k, v in items.items():
|
for k, v in items.items():
|
||||||
self[k] = v
|
self[k] = v
|
||||||
|
|
||||||
|
def to_dict(self, date_as_string: bool = False, string_date_format: str = "default") -> dict:
|
||||||
|
"""Convert time series to a dictionary
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
date_as_string: boolean, default False
|
||||||
|
Whether date should be converted to string.
|
||||||
|
If False, then the output will contain datetime.datetime objects
|
||||||
|
|
||||||
|
string_date_format: datetime library compatible format string
|
||||||
|
If date is to be output as string, pass the format here.
|
||||||
|
If it is left as default, the format set in fincal_options will be used.
|
||||||
|
"""
|
||||||
|
|
||||||
|
if not date_as_string:
|
||||||
|
return self.data
|
||||||
|
|
||||||
|
if string_date_format == "default":
|
||||||
|
string_date_format = FincalOptions.date_format
|
||||||
|
|
||||||
|
data = {datetime.datetime.strftime(dt, string_date_format): val for dt, val in self.data.items()}
|
||||||
|
return data
|
||||||
|
|
||||||
|
def to_list(self, date_as_string: bool = False, string_date_format: str = "default") -> List[tuple]:
|
||||||
|
"""Convert time series to a list of tuples
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
date_as_string: boolean, optional
|
||||||
|
Whether date should be converted to string.
|
||||||
|
If False, then the output will contain datetime.datetime objects
|
||||||
|
|
||||||
|
string_date_format : str, optional
|
||||||
|
If date is to be output as string, pass the format here.
|
||||||
|
If it is left as default, the format set in fincal_options will be used.
|
||||||
|
"""
|
||||||
|
|
||||||
|
if not date_as_string:
|
||||||
|
return list(self.data.items())
|
||||||
|
|
||||||
|
if string_date_format == "default":
|
||||||
|
string_date_format = FincalOptions.date_format
|
||||||
|
|
||||||
|
data = [(datetime.datetime.strftime(dt, string_date_format), val) for dt, val in self.data.items()]
|
||||||
|
return data
|
||||||
|
@ -57,19 +57,19 @@ def sharpe_ratio(
|
|||||||
frequency:
|
frequency:
|
||||||
The frequency at which returns should be calculated.
|
The frequency at which returns should be calculated.
|
||||||
|
|
||||||
return_period_unit : 'years', 'months', 'days'
|
return_period_unit: 'years', 'months', 'days'
|
||||||
The type of time period to use for return calculation.
|
The type of time period to use for return calculation.
|
||||||
|
|
||||||
return_period_value : int
|
return_period_value: int
|
||||||
The value of the specified interval type over which returns needs to be calculated.
|
The value of the specified interval type over which returns needs to be calculated.
|
||||||
|
|
||||||
as_on_match : str, optional
|
as_on_match: str, optional
|
||||||
The mode of matching the as_on_date. Refer closest.
|
The mode of matching the as_on_date. Refer closest.
|
||||||
|
|
||||||
prior_match : str, optional
|
prior_match: str, optional
|
||||||
The mode of matching the prior_date. Refer closest.
|
The mode of matching the prior_date. Refer closest.
|
||||||
|
|
||||||
closest : str, optional
|
closest: str, optional
|
||||||
The mode of matching the closest date.
|
The mode of matching the closest date.
|
||||||
Valid values are 'exact', 'previous', 'next' and next.
|
Valid values are 'exact', 'previous', 'next' and next.
|
||||||
|
|
||||||
@ -142,10 +142,10 @@ def beta(
|
|||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
asset_data : TimeSeries
|
asset_data: TimeSeries
|
||||||
The time series data of the asset
|
The time series data of the asset
|
||||||
|
|
||||||
market_data : TimeSeries
|
market_data: TimeSeries
|
||||||
The time series data of the relevant market index
|
The time series data of the relevant market index
|
||||||
|
|
||||||
from_date:
|
from_date:
|
||||||
@ -159,19 +159,19 @@ def beta(
|
|||||||
frequency:
|
frequency:
|
||||||
The frequency at which returns should be calculated.
|
The frequency at which returns should be calculated.
|
||||||
|
|
||||||
return_period_unit : 'years', 'months', 'days'
|
return_period_unit: 'years', 'months', 'days'
|
||||||
The type of time period to use for return calculation.
|
The type of time period to use for return calculation.
|
||||||
|
|
||||||
return_period_value : int
|
return_period_value: int
|
||||||
The value of the specified interval type over which returns needs to be calculated.
|
The value of the specified interval type over which returns needs to be calculated.
|
||||||
|
|
||||||
as_on_match : str, optional
|
as_on_match: str, optional
|
||||||
The mode of matching the as_on_date. Refer closest.
|
The mode of matching the as_on_date. Refer closest.
|
||||||
|
|
||||||
prior_match : str, optional
|
prior_match: str, optional
|
||||||
The mode of matching the prior_date. Refer closest.
|
The mode of matching the prior_date. Refer closest.
|
||||||
|
|
||||||
closest : str, optional
|
closest: str, optional
|
||||||
The mode of matching the closest date.
|
The mode of matching the closest date.
|
||||||
Valid values are 'exact', 'previous', 'next' and next.
|
Valid values are 'exact', 'previous', 'next' and next.
|
||||||
|
|
||||||
@ -216,6 +216,7 @@ def beta(
|
|||||||
return beta
|
return beta
|
||||||
|
|
||||||
|
|
||||||
|
@date_parser(4, 5)
|
||||||
def jensens_alpha(
|
def jensens_alpha(
|
||||||
asset_data: TimeSeries,
|
asset_data: TimeSeries,
|
||||||
market_data: TimeSeries,
|
market_data: TimeSeries,
|
||||||
@ -243,10 +244,10 @@ def jensens_alpha(
|
|||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
asset_data : TimeSeries
|
asset_data: TimeSeries
|
||||||
The time series data of the asset
|
The time series data of the asset
|
||||||
|
|
||||||
market_data : TimeSeries
|
market_data: TimeSeries
|
||||||
The time series data of the relevant market index
|
The time series data of the relevant market index
|
||||||
|
|
||||||
risk_free_data:
|
risk_free_data:
|
||||||
@ -270,19 +271,19 @@ def jensens_alpha(
|
|||||||
frequency:
|
frequency:
|
||||||
The frequency at which returns should be calculated.
|
The frequency at which returns should be calculated.
|
||||||
|
|
||||||
return_period_unit : 'years', 'months', 'days'
|
return_period_unit: 'years', 'months', 'days'
|
||||||
The type of time period to use for return calculation.
|
The type of time period to use for return calculation.
|
||||||
|
|
||||||
return_period_value : int
|
return_period_value: int
|
||||||
The value of the specified interval type over which returns needs to be calculated.
|
The value of the specified interval type over which returns needs to be calculated.
|
||||||
|
|
||||||
as_on_match : str, optional
|
as_on_match: str, optional
|
||||||
The mode of matching the as_on_date. Refer closest.
|
The mode of matching the as_on_date. Refer closest.
|
||||||
|
|
||||||
prior_match : str, optional
|
prior_match: str, optional
|
||||||
The mode of matching the prior_date. Refer closest.
|
The mode of matching the prior_date. Refer closest.
|
||||||
|
|
||||||
closest : str, optional
|
closest: str, optional
|
||||||
The mode of matching the closest date.
|
The mode of matching the closest date.
|
||||||
Valid values are 'exact', 'previous', 'next' and next.
|
Valid values are 'exact', 'previous', 'next' and next.
|
||||||
|
|
||||||
@ -346,3 +347,109 @@ def jensens_alpha(
|
|||||||
|
|
||||||
jensens_alpha = realized_return[1] - risk_free_rate + beta_value * (market_return[1] - risk_free_rate)
|
jensens_alpha = realized_return[1] - risk_free_rate + beta_value * (market_return[1] - risk_free_rate)
|
||||||
return jensens_alpha
|
return jensens_alpha
|
||||||
|
|
||||||
|
|
||||||
|
@date_parser(2, 3)
|
||||||
|
def correlation(
|
||||||
|
data1: TimeSeries,
|
||||||
|
data2: TimeSeries,
|
||||||
|
from_date: str | datetime.datetime = None,
|
||||||
|
to_date: str | datetime.datetime = None,
|
||||||
|
frequency: Literal["D", "W", "M", "Q", "H", "Y"] = None,
|
||||||
|
return_period_unit: Literal["years", "months", "days"] = "years",
|
||||||
|
return_period_value: int = 1,
|
||||||
|
as_on_match: str = "closest",
|
||||||
|
prior_match: str = "closest",
|
||||||
|
closest: Literal["previous", "next"] = "previous",
|
||||||
|
date_format: str = None,
|
||||||
|
) -> float:
|
||||||
|
"""Calculate the correlation between two assets
|
||||||
|
|
||||||
|
correlation calculation is done based on rolling returns.
|
||||||
|
It must be noted that correlation is not calculated directly on the asset prices.
|
||||||
|
The asset prices used to calculate returns and correlation is then calculated based on these returns.
|
||||||
|
Hence this function requires all parameters for rolling returns calculations.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
data1: TimeSeries
|
||||||
|
The first time series data
|
||||||
|
|
||||||
|
data2: TimeSeries
|
||||||
|
The second time series data
|
||||||
|
|
||||||
|
from_date:
|
||||||
|
Start date from which returns should be calculated.
|
||||||
|
Defaults to the first date of the series.
|
||||||
|
|
||||||
|
to_date:
|
||||||
|
End date till which returns should be calculated.
|
||||||
|
Defaults to the last date of the series.
|
||||||
|
|
||||||
|
frequency:
|
||||||
|
The frequency at which returns should be calculated.
|
||||||
|
|
||||||
|
return_period_unit: 'years', 'months', 'days'
|
||||||
|
The type of time period to use for return calculation.
|
||||||
|
|
||||||
|
return_period_value: int
|
||||||
|
The value of the specified interval type over which returns needs to be calculated.
|
||||||
|
|
||||||
|
as_on_match: str, optional
|
||||||
|
The mode of matching the as_on_date. Refer closest.
|
||||||
|
|
||||||
|
prior_match: str, optional
|
||||||
|
The mode of matching the prior_date. Refer closest.
|
||||||
|
|
||||||
|
closest: str, optional
|
||||||
|
The mode of matching the closest date.
|
||||||
|
Valid values are 'exact', 'previous', 'next' and next.
|
||||||
|
|
||||||
|
The date format to use for this operation.
|
||||||
|
Should be passed as a datetime library compatible string.
|
||||||
|
Sets the date format only for this operation. To set it globally, use FincalOptions.date_format
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
The value of beta as a float.
|
||||||
|
|
||||||
|
Raises
|
||||||
|
------
|
||||||
|
ValueError:
|
||||||
|
* If frequency of both TimeSeries do not match
|
||||||
|
* If both time series do not have data between the from date and to date
|
||||||
|
"""
|
||||||
|
interval_years = _interval_to_years(return_period_unit, return_period_value)
|
||||||
|
interval_days = int(interval_years * 365 + 1)
|
||||||
|
|
||||||
|
annual_compounded_returns = True if interval_years > 1 else False
|
||||||
|
|
||||||
|
if from_date is None:
|
||||||
|
from_date = data1.start_date + datetime.timedelta(days=interval_days)
|
||||||
|
if to_date is None:
|
||||||
|
to_date = data1.end_date
|
||||||
|
|
||||||
|
if data1.frequency != data2.frequency:
|
||||||
|
raise ValueError("Correlation calculation requires both time series to be of same frequency")
|
||||||
|
|
||||||
|
if from_date < data2.start_date or to_date > data2.end_date:
|
||||||
|
raise ValueError("Data between from_date and to_date must be present in both time series")
|
||||||
|
|
||||||
|
common_params = {
|
||||||
|
"from_date": from_date,
|
||||||
|
"to_date": to_date,
|
||||||
|
"frequency": frequency,
|
||||||
|
"return_period_unit": return_period_unit,
|
||||||
|
"return_period_value": return_period_value,
|
||||||
|
"as_on_match": as_on_match,
|
||||||
|
"prior_match": prior_match,
|
||||||
|
"closest": closest,
|
||||||
|
"date_format": date_format,
|
||||||
|
"annual_compounded_returns": annual_compounded_returns,
|
||||||
|
}
|
||||||
|
|
||||||
|
asset_rr = data1.calculate_rolling_returns(**common_params)
|
||||||
|
market_rr = data2.calculate_rolling_returns(**common_params)
|
||||||
|
|
||||||
|
cor = statistics.correlation(asset_rr.values, market_rr.values)
|
||||||
|
return cor
|
||||||
|
Loading…
Reference in New Issue
Block a user