Compare commits

...

4 Commits

5 changed files with 203 additions and 23 deletions

View File

@ -37,6 +37,7 @@ def date_parser(*pos):
Each of the dates is automatically parsed into a datetime.datetime object from string. Each of the dates is automatically parsed into a datetime.datetime object from string.
""" """
def parse_dates(func): def parse_dates(func):
def wrapper_func(*args, **kwargs): def wrapper_func(*args, **kwargs):
date_format = kwargs.get("date_format", None) date_format = kwargs.get("date_format", None)
@ -49,9 +50,15 @@ def date_parser(*pos):
date = kwargs.get(kwarg, None) date = kwargs.get(kwarg, None)
in_args = False in_args = False
if date is None: if date is None:
try:
date = args[j] date = args[j]
except IndexError:
pass
in_args = True in_args = True
if date is None:
continue
parsed_date = _parse_date(date, date_format) parsed_date = _parse_date(date, date_format)
if not in_args: if not in_args:
kwargs[kwarg] = parsed_date kwargs[kwarg] = parsed_date

View File

@ -7,8 +7,13 @@ from typing import Iterable, List, Literal, Mapping, Union
from dateutil.relativedelta import relativedelta from dateutil.relativedelta import relativedelta
from .core import AllFrequencies, TimeSeriesCore, date_parser from .core import AllFrequencies, Series, TimeSeriesCore, date_parser
from .utils import _find_closest_date, _interval_to_years, _preprocess_match_options from .utils import (
FincalOptions,
_find_closest_date,
_interval_to_years,
_preprocess_match_options,
)
@date_parser(0, 1) @date_parser(0, 1)
@ -17,6 +22,7 @@ def create_date_series(
end_date: Union[str, datetime.datetime], end_date: Union[str, datetime.datetime],
frequency: Literal["D", "W", "M", "Q", "H", "Y"], frequency: Literal["D", "W", "M", "Q", "H", "Y"],
eomonth: bool = False, eomonth: bool = False,
skip_weekends: bool = False,
) -> List[datetime.datetime]: ) -> List[datetime.datetime]:
"""Create a date series with a specified frequency """Create a date series with a specified frequency
@ -53,8 +59,6 @@ def create_date_series(
if eomonth and frequency.days < AllFrequencies.M.days: if eomonth and frequency.days < AllFrequencies.M.days:
raise ValueError(f"eomonth cannot be set to True if frequency is higher than {AllFrequencies.M.name}") raise ValueError(f"eomonth cannot be set to True if frequency is higher than {AllFrequencies.M.name}")
# start_date = _parse_date(start_date)
# end_date = _parse_date(end_date)
datediff = (end_date - start_date).days / frequency.days + 1 datediff = (end_date - start_date).days / frequency.days + 1
dates = [] dates = []
@ -67,9 +71,12 @@ def create_date_series(
date = date.replace(day=1).replace(month=next_month) - relativedelta(days=1) date = date.replace(day=1).replace(month=next_month) - relativedelta(days=1)
if date <= end_date: if date <= end_date:
if frequency.days > 1 or not skip_weekends:
dates.append(date)
elif date.weekday() < 5:
dates.append(date) dates.append(date)
return dates return Series(dates, data_type="date")
class TimeSeries(TimeSeriesCore): class TimeSeries(TimeSeriesCore):
@ -387,8 +394,8 @@ class TimeSeries(TimeSeriesCore):
@date_parser(1, 2) @date_parser(1, 2)
def volatility( def volatility(
self, self,
from_date: Union[datetime.date, str], from_date: Union[datetime.date, str] = None,
to_date: Union[datetime.date, str], to_date: Union[datetime.date, str] = None,
frequency: Literal["D", "W", "M", "Q", "H", "Y"] = None, frequency: Literal["D", "W", "M", "Q", "H", "Y"] = None,
as_on_match: str = "closest", as_on_match: str = "closest",
prior_match: str = "closest", prior_match: str = "closest",
@ -399,6 +406,7 @@ class TimeSeries(TimeSeriesCore):
interval_value: int = 1, interval_value: int = 1,
date_format: str = None, date_format: str = None,
annualize_volatility: bool = True, annualize_volatility: bool = True,
traded_days: int = None,
): ):
"""Calculates the volatility of the time series.add() """Calculates the volatility of the time series.add()
@ -414,6 +422,11 @@ class TimeSeries(TimeSeriesCore):
except AttributeError: except AttributeError:
raise ValueError(f"Invalid argument for frequency {frequency}") raise ValueError(f"Invalid argument for frequency {frequency}")
if from_date is None:
from_date = self.start_date + relativedelta(**{interval_type: interval_value})
if to_date is None:
to_date = self.end_date
if annual_compounded_returns is None: if annual_compounded_returns is None:
annual_compounded_returns = False if frequency.days <= 366 else True annual_compounded_returns = False if frequency.days <= 366 else True
@ -431,10 +444,13 @@ class TimeSeries(TimeSeriesCore):
) )
sd = statistics.stdev(rolling_returns.values) sd = statistics.stdev(rolling_returns.values)
if annualize_volatility: if annualize_volatility:
if traded_days is None:
traded_days = FincalOptions.traded_days
if interval_type == "months": if interval_type == "months":
sd *= math.sqrt(12) sd *= math.sqrt(12)
elif interval_type == "days": elif interval_type == "days":
sd *= math.sqrt(252) sd *= math.sqrt(traded_days)
return sd return sd

View File

@ -9,6 +9,7 @@ from .exceptions import DateNotFoundError, DateOutOfRangeError
class FincalOptions: class FincalOptions:
date_format: str = "%Y-%m-%d" date_format: str = "%Y-%m-%d"
closest: str = "before" # after closest: str = "before" # after
traded_days: int = 365
def _parse_date(date: str, date_format: str = None): def _parse_date(date: str, date_format: str = None):

View File

@ -13,7 +13,7 @@ THIS_DIR = os.path.dirname(os.path.abspath(__file__))
sample_data_path = os.path.join(THIS_DIR, "data") sample_data_path = os.path.join(THIS_DIR, "data")
def create_test_data( def create_random_test_data(
frequency: str, frequency: str,
eomonth: bool, eomonth: bool,
n: int, n: int,
@ -55,6 +55,30 @@ def create_test_data(
return data return data
def create_organised_test_data() -> dict:
"""Creates organised test data so that output is exactly same in each run"""
all_dates, all_values = [], []
prev_date, prev_number = datetime.datetime(2018, 1, 1), 1000
for i in range(1, 1000):
if i % 5 == 0:
prev_date += datetime.timedelta(days=3)
else:
prev_date += datetime.timedelta(days=1)
all_dates.append(prev_date)
for i in range(1, 1000):
rem = i % 7
if rem % 2:
prev_number -= rem
else:
prev_number += rem
all_values.append(prev_number)
return dict(zip(all_dates, all_values))
class TestDateSeries: class TestDateSeries:
def test_daily(self): def test_daily(self):
start_date = datetime.datetime(2020, 1, 1) start_date = datetime.datetime(2020, 1, 1)
@ -119,7 +143,9 @@ class TestDateSeries:
class TestFincalBasic: class TestFincalBasic:
def test_creation(self): def test_creation(self):
data = create_test_data(frequency="D", eomonth=False, n=50, gaps=0, month_position="start", date_as_str=True) data = create_random_test_data(
frequency="D", eomonth=False, n=50, gaps=0, month_position="start", date_as_str=True
)
time_series = TimeSeries(data, frequency="D") time_series = TimeSeries(data, frequency="D")
assert len(time_series) == 50 assert len(time_series) == 50
assert isinstance(time_series.frequency, Frequency) assert isinstance(time_series.frequency, Frequency)
@ -128,12 +154,16 @@ class TestFincalBasic:
ffill_data = time_series.ffill() ffill_data = time_series.ffill()
assert len(ffill_data) == 50 assert len(ffill_data) == 50
data = create_test_data(frequency="D", eomonth=False, n=500, gaps=0.1, month_position="start", date_as_str=True) data = create_random_test_data(
frequency="D", eomonth=False, n=500, gaps=0.1, month_position="start", date_as_str=True
)
time_series = TimeSeries(data, frequency="D") time_series = TimeSeries(data, frequency="D")
assert len(time_series) == 450 assert len(time_series) == 450
def test_fill(self): def test_fill(self):
data = create_test_data(frequency="D", eomonth=False, n=500, gaps=0.1, month_position="start", date_as_str=True) data = create_random_test_data(
frequency="D", eomonth=False, n=500, gaps=0.1, month_position="start", date_as_str=True
)
time_series = TimeSeries(data, frequency="D") time_series = TimeSeries(data, frequency="D")
ffill_data = time_series.ffill() ffill_data = time_series.ffill()
assert len(ffill_data) >= 498 assert len(ffill_data) >= 498
@ -142,7 +172,9 @@ class TestFincalBasic:
assert ffill_data is None assert ffill_data is None
assert len(time_series) >= 498 assert len(time_series) >= 498
data = create_test_data(frequency="D", eomonth=False, n=500, gaps=0.1, month_position="start", date_as_str=True) data = create_random_test_data(
frequency="D", eomonth=False, n=500, gaps=0.1, month_position="start", date_as_str=True
)
time_series = TimeSeries(data, frequency="D") time_series = TimeSeries(data, frequency="D")
bfill_data = time_series.bfill() bfill_data = time_series.bfill()
assert len(bfill_data) >= 498 assert len(bfill_data) >= 498
@ -160,7 +192,9 @@ class TestFincalBasic:
assert bf["2021-01-03"][1] == 240 assert bf["2021-01-03"][1] == 240
def test_iloc_slicing(self): def test_iloc_slicing(self):
data = create_test_data(frequency="D", eomonth=False, n=50, gaps=0, month_position="start", date_as_str=True) data = create_random_test_data(
frequency="D", eomonth=False, n=50, gaps=0, month_position="start", date_as_str=True
)
time_series = TimeSeries(data, frequency="D") time_series = TimeSeries(data, frequency="D")
assert time_series.iloc[0] is not None assert time_series.iloc[0] is not None
assert time_series.iloc[:3] is not None assert time_series.iloc[:3] is not None
@ -170,7 +204,9 @@ class TestFincalBasic:
assert len(time_series.iloc[10:20]) == 10 assert len(time_series.iloc[10:20]) == 10
def test_key_slicing(self): def test_key_slicing(self):
data = create_test_data(frequency="D", eomonth=False, n=50, gaps=0, month_position="start", date_as_str=True) data = create_random_test_data(
frequency="D", eomonth=False, n=50, gaps=0, month_position="start", date_as_str=True
)
time_series = TimeSeries(data, frequency="D") time_series = TimeSeries(data, frequency="D")
available_date = time_series.iloc[5][0] available_date = time_series.iloc[5][0]
assert time_series[available_date] is not None assert time_series[available_date] is not None
@ -199,17 +235,29 @@ class TestReturns:
def test_returns_calc(self): def test_returns_calc(self):
ts = TimeSeries(self.data, frequency="M") ts = TimeSeries(self.data, frequency="M")
returns = ts.calculate_returns("2021-01-01", annual_compounded_returns=False, interval_type="years", interval_value=1) returns = ts.calculate_returns(
"2021-01-01", annual_compounded_returns=False, interval_type="years", interval_value=1
)
assert returns[1] == 2.4 assert returns[1] == 2.4
returns = ts.calculate_returns("2020-04-01", annual_compounded_returns=False, interval_type="months", interval_value=3) returns = ts.calculate_returns(
"2020-04-01", annual_compounded_returns=False, interval_type="months", interval_value=3
)
assert round(returns[1], 4) == 0.6 assert round(returns[1], 4) == 0.6
returns = ts.calculate_returns("2020-04-01", annual_compounded_returns=True, interval_type="months", interval_value=3) returns = ts.calculate_returns(
"2020-04-01", annual_compounded_returns=True, interval_type="months", interval_value=3
)
assert round(returns[1], 4) == 5.5536 assert round(returns[1], 4) == 5.5536
returns = ts.calculate_returns("2020-04-01", annual_compounded_returns=False, interval_type="days", interval_value=90) returns = ts.calculate_returns(
"2020-04-01", annual_compounded_returns=False, interval_type="days", interval_value=90
)
assert round(returns[1], 4) == 0.6 assert round(returns[1], 4) == 0.6
returns = ts.calculate_returns("2020-04-01", annual_compounded_returns=True, interval_type="days", interval_value=90) returns = ts.calculate_returns(
"2020-04-01", annual_compounded_returns=True, interval_type="days", interval_value=90
)
assert round(returns[1], 4) == 5.727 assert round(returns[1], 4) == 5.727
returns = ts.calculate_returns("2020-04-10", annual_compounded_returns=True, interval_type="days", interval_value=90) returns = ts.calculate_returns(
"2020-04-10", annual_compounded_returns=True, interval_type="days", interval_value=90
)
assert round(returns[1], 4) == 5.727 assert round(returns[1], 4) == 5.727
with pytest.raises(DateNotFoundError): with pytest.raises(DateNotFoundError):
ts.calculate_returns("2020-04-10", interval_type="days", interval_value=90, as_on_match="exact") ts.calculate_returns("2020-04-10", interval_type="days", interval_value=90, as_on_match="exact")
@ -239,3 +287,16 @@ class TestReturns:
FincalOptions.date_format = "%Y-%m-%d" FincalOptions.date_format = "%Y-%m-%d"
with pytest.raises(DateNotFoundError): with pytest.raises(DateNotFoundError):
ts.calculate_returns("2020-04-25", interval_type="days", interval_value=90, closest_max_days=10) ts.calculate_returns("2020-04-25", interval_type="days", interval_value=90, closest_max_days=10)
class TestVolatility:
data = create_organised_test_data()
def test_volatility_basic(self):
ts = TimeSeries(self.data, frequency="D")
sd = ts.volatility()
assert len(ts) == 999
assert round(sd, 6) == 0.057391
sd = ts.volatility(annualize_volatility=False)
assert round(sd, 6) == 0.003004

95
tests/test_fincal2.py Normal file
View File

@ -0,0 +1,95 @@
import datetime
import math
import random
import pytest
from fincal.exceptions import DateNotFoundError
from fincal.fincal import TimeSeries, create_date_series
from fincal.utils import FincalOptions
def create_prices(s0: float, mu: float, sigma: float, num_prices: int) -> list:
"""Generates a price following a geometric brownian motion process based on the input of the arguments:
- s0: Asset inital price.
- mu: Interest rate expressed annual terms.
- sigma: Volatility expressed annual terms.
- seed: seed for the random number generator
- num_prices: number of prices to generate
"""
random.seed(1234) # WARNING! Changing the seed will cause most tests to fail
all_values = []
for _ in range(num_prices):
s0 *= math.exp(
(mu - 0.5 * sigma**2) * (1.0 / 365.0) + sigma * math.sqrt(1.0 / 365.0) * random.gauss(mu=0, sigma=1)
)
all_values.append(round(s0, 2))
return all_values
def create_data():
"""Creates TimeSeries data"""
dates = create_date_series("2017-01-01", "2020-10-31", "D", skip_weekends=True)
values = create_prices(1000, 0.1, 0.05, 1000)
ts = TimeSeries(dict(zip(dates, values)), frequency="D")
return ts
class TestReturns:
def test_returns_calc(self):
ts = create_data()
returns = ts.calculate_returns(
"2020-01-01", annual_compounded_returns=False, interval_type="years", interval_value=1
)
assert round(returns[1], 6) == 0.112913
returns = ts.calculate_returns(
"2020-04-01", annual_compounded_returns=False, interval_type="months", interval_value=3
)
assert round(returns[1], 6) == 0.015908
returns = ts.calculate_returns(
"2020-04-01", annual_compounded_returns=True, interval_type="months", interval_value=3
)
assert round(returns[1], 6) == 0.065167
returns = ts.calculate_returns(
"2020-04-01", annual_compounded_returns=False, interval_type="days", interval_value=90
)
assert round(returns[1], 6) == 0.017673
returns = ts.calculate_returns(
"2020-04-01", annual_compounded_returns=True, interval_type="days", interval_value=90
)
assert round(returns[1], 6) == 0.073632
with pytest.raises(DateNotFoundError):
ts.calculate_returns("2020-04-04", interval_type="days", interval_value=90, as_on_match="exact")
with pytest.raises(DateNotFoundError):
ts.calculate_returns("2020-04-04", interval_type="months", interval_value=3, prior_match="exact")
def test_date_formats(self):
ts = create_data()
FincalOptions.date_format = "%d-%m-%Y"
with pytest.raises(ValueError):
ts.calculate_returns("2020-04-10", annual_compounded_returns=True, interval_type="days", interval_value=90)
returns1 = ts.calculate_returns("2020-04-01", interval_type="days", interval_value=90, date_format="%Y-%m-%d")
returns2 = ts.calculate_returns("01-04-2020", interval_type="days", interval_value=90)
assert round(returns1[1], 6) == round(returns2[1], 6) == 0.073632
FincalOptions.date_format = "%m-%d-%Y"
with pytest.raises(ValueError):
ts.calculate_returns("2020-04-01", annual_compounded_returns=True, interval_type="days", interval_value=90)
returns1 = ts.calculate_returns("2020-04-01", interval_type="days", interval_value=90, date_format="%Y-%m-%d")
returns2 = ts.calculate_returns("04-01-2020", interval_type="days", interval_value=90)
assert round(returns1[1], 6) == round(returns2[1], 6) == 0.073632
def test_limits(self):
ts = create_data()
FincalOptions.date_format = "%Y-%m-%d"
with pytest.raises(DateNotFoundError):
ts.calculate_returns("2020-11-25", interval_type="days", interval_value=90, closest_max_days=10)