Compare commits
3 Commits
77845ff501
...
ef2973a1d1
Author | SHA1 | Date | |
---|---|---|---|
ef2973a1d1 | |||
d1f9e3924f | |||
1be38ce7d4 |
153
fincal/core.py
153
fincal/core.py
@ -29,71 +29,12 @@ class AllFrequencies:
|
||||
Y = Frequency("annual", "years", 1, 365, "Y")
|
||||
|
||||
|
||||
def _preprocess_timeseries(
|
||||
data: Union[
|
||||
Sequence[Iterable[Union[str, datetime.datetime, float]]],
|
||||
Sequence[Mapping[str, Union[float, datetime.datetime]]],
|
||||
Sequence[Mapping[Union[str, datetime.datetime], float]],
|
||||
Mapping[Union[str, datetime.datetime], float],
|
||||
],
|
||||
date_format: str,
|
||||
) -> List[Tuple[datetime.datetime, float]]:
|
||||
"""Converts any type of list to the correct type"""
|
||||
class DateNotFoundError(Exception):
|
||||
"""Exception to be raised when date is not found"""
|
||||
|
||||
if isinstance(data, Sequence):
|
||||
if isinstance(data[0], Mapping):
|
||||
if len(data[0].keys()) == 2:
|
||||
current_data = [tuple(i.values()) for i in data]
|
||||
elif len(data[0].keys()) == 1:
|
||||
current_data = [tuple(*i.items()) for i in data]
|
||||
else:
|
||||
raise TypeError("Could not parse the data")
|
||||
current_data = _preprocess_timeseries(current_data, date_format)
|
||||
|
||||
elif isinstance(data[0], Sequence):
|
||||
if isinstance(data[0][0], str):
|
||||
current_data = []
|
||||
for i in data:
|
||||
row = datetime.datetime.strptime(i[0], date_format), i[1]
|
||||
current_data.append(row)
|
||||
elif isinstance(data[0][0], datetime.datetime):
|
||||
current_data = [(i, j) for i, j in data]
|
||||
else:
|
||||
raise TypeError("Could not parse the data")
|
||||
else:
|
||||
raise TypeError("Could not parse the data")
|
||||
|
||||
elif isinstance(data, Mapping):
|
||||
current_data = [(k, v) for k, v in data.items()]
|
||||
current_data = _preprocess_timeseries(current_data, date_format)
|
||||
|
||||
else:
|
||||
raise TypeError("Could not parse the data")
|
||||
current_data.sort()
|
||||
return current_data
|
||||
|
||||
|
||||
def _preprocess_match_options(as_on_match: str, prior_match: str, closest: str) -> datetime.timedelta:
|
||||
"""Checks the arguments and returns appropriate timedelta objects"""
|
||||
|
||||
deltas = {"exact": 0, "previous": -1, "next": 1}
|
||||
if closest not in deltas.keys():
|
||||
raise ValueError(f"Invalid closest argument: {closest}")
|
||||
|
||||
as_on_match = closest if as_on_match == "closest" else as_on_match
|
||||
prior_match = closest if prior_match == "closest" else prior_match
|
||||
|
||||
if as_on_match in deltas.keys():
|
||||
as_on_delta = datetime.timedelta(days=deltas[as_on_match])
|
||||
else:
|
||||
raise ValueError(f"Invalid as_on_match argument: {as_on_match}")
|
||||
|
||||
if prior_match in deltas.keys():
|
||||
prior_delta = datetime.timedelta(days=deltas[prior_match])
|
||||
else:
|
||||
raise ValueError(f"Invalid prior_match argument: {prior_match}")
|
||||
|
||||
return as_on_delta, prior_delta
|
||||
def __init__(self, message, date):
|
||||
message = f"{message}: {date}"
|
||||
super().__init__(message)
|
||||
|
||||
|
||||
def _parse_date(date: str, date_format: str = None):
|
||||
@ -114,15 +55,85 @@ def _parse_date(date: str, date_format: str = None):
|
||||
return date
|
||||
|
||||
|
||||
def _interval_to_years(interval_type: Literal['years', 'months', 'day'], interval_value: int) -> int:
|
||||
def _preprocess_timeseries(
|
||||
data: Union[
|
||||
Sequence[Iterable[Union[str, datetime.datetime, float]]],
|
||||
Sequence[Mapping[str, Union[float, datetime.datetime]]],
|
||||
Sequence[Mapping[Union[str, datetime.datetime], float]],
|
||||
Mapping[Union[str, datetime.datetime], float],
|
||||
],
|
||||
date_format: str,
|
||||
) -> List[Tuple[datetime.datetime, float]]:
|
||||
"""Converts any type of list to the correct type"""
|
||||
|
||||
if isinstance(data, Mapping):
|
||||
current_data = [(k, v) for k, v in data.items()]
|
||||
return _preprocess_timeseries(current_data, date_format)
|
||||
|
||||
if not isinstance(data, Sequence):
|
||||
raise TypeError("Could not parse the data")
|
||||
|
||||
if isinstance(data[0], Sequence):
|
||||
return sorted([(_parse_date(i, date_format), j) for i, j in data])
|
||||
|
||||
if not isinstance(data[0], Mapping):
|
||||
raise TypeError("Could not parse the data")
|
||||
|
||||
if len(data[0]) == 1:
|
||||
current_data = [tuple(*i.items()) for i in data]
|
||||
elif len(data[0]) == 2:
|
||||
current_data = [tuple(i.values()) for i in data]
|
||||
else:
|
||||
raise TypeError("Could not parse the data")
|
||||
return _preprocess_timeseries(current_data, date_format)
|
||||
|
||||
|
||||
def _preprocess_match_options(as_on_match: str, prior_match: str, closest: str) -> datetime.timedelta:
|
||||
"""Checks the arguments and returns appropriate timedelta objects"""
|
||||
|
||||
deltas = {"exact": 0, "previous": -1, "next": 1}
|
||||
if closest not in deltas.keys():
|
||||
raise ValueError(f"Invalid argument for closest: {closest}")
|
||||
|
||||
as_on_match = closest if as_on_match == "closest" else as_on_match
|
||||
prior_match = closest if prior_match == "closest" else prior_match
|
||||
|
||||
if as_on_match in deltas.keys():
|
||||
as_on_delta = datetime.timedelta(days=deltas[as_on_match])
|
||||
else:
|
||||
raise ValueError(f"Invalid as_on_match argument: {as_on_match}")
|
||||
|
||||
if prior_match in deltas.keys():
|
||||
prior_delta = datetime.timedelta(days=deltas[prior_match])
|
||||
else:
|
||||
raise ValueError(f"Invalid prior_match argument: {prior_match}")
|
||||
|
||||
return as_on_delta, prior_delta
|
||||
|
||||
|
||||
def _find_closest_date(data, date, delta, if_not_found):
|
||||
"""Helper function to find data for the closest available date"""
|
||||
|
||||
row = data.get(date, None)
|
||||
if row is not None:
|
||||
return date, row
|
||||
|
||||
if delta:
|
||||
return _find_closest_date(data, date + delta, delta, if_not_found)
|
||||
|
||||
if if_not_found == "fail":
|
||||
raise DateNotFoundError("Data not found for date", date)
|
||||
if if_not_found == "nan":
|
||||
return date, float("NaN")
|
||||
|
||||
raise ValueError(f"Invalid argument for if_not_found: {if_not_found}")
|
||||
|
||||
|
||||
def _interval_to_years(interval_type: Literal["years", "months", "day"], interval_value: int) -> int:
|
||||
"""Converts any time period to years for use with compounding functions"""
|
||||
|
||||
day_conversion_factor = {
|
||||
'years': 1,
|
||||
'months': 12,
|
||||
'days': 365
|
||||
}
|
||||
years = interval_value/day_conversion_factor[interval_type]
|
||||
year_conversion_factor = {"years": 1, "months": 12, "days": 365}
|
||||
years = interval_value / year_conversion_factor[interval_type]
|
||||
return years
|
||||
|
||||
|
||||
|
@ -8,6 +8,7 @@ from dateutil.relativedelta import relativedelta
|
||||
from .core import (
|
||||
AllFrequencies,
|
||||
TimeSeriesCore,
|
||||
_find_closest_date,
|
||||
_interval_to_years,
|
||||
_parse_date,
|
||||
_preprocess_match_options,
|
||||
@ -189,40 +190,19 @@ class TimeSeries(TimeSeriesCore):
|
||||
|
||||
as_on = _parse_date(as_on, date_format)
|
||||
as_on_delta, prior_delta = _preprocess_match_options(as_on_match, prior_match, closest)
|
||||
original_as_on = as_on
|
||||
|
||||
while True:
|
||||
current = self.data.get(as_on, None)
|
||||
if current is not None:
|
||||
break
|
||||
elif not as_on_delta:
|
||||
if if_not_found == 'fail':
|
||||
raise ValueError(f"As on date {original_as_on} not found")
|
||||
elif if_not_found == 'nan':
|
||||
return as_on, float("NaN")
|
||||
else:
|
||||
raise ValueError(f"Invalid argument for if_not_found: {if_not_found}")
|
||||
as_on += as_on_delta
|
||||
|
||||
prev_date = as_on - relativedelta(**{interval_type: interval_value})
|
||||
while True:
|
||||
previous = self.data.get(prev_date, None)
|
||||
if previous is not None:
|
||||
break
|
||||
elif not prior_delta:
|
||||
if if_not_found == 'fail':
|
||||
raise ValueError(f"Previous date {previous} not found")
|
||||
elif if_not_found == 'nan':
|
||||
return (as_on if return_actual_date else original_as_on), float("NaN")
|
||||
else:
|
||||
raise ValueError(f"Invalid argument for if_not_found: {if_not_found}")
|
||||
prev_date += prior_delta
|
||||
current = _find_closest_date(self.data, as_on, as_on_delta, if_not_found)
|
||||
previous = _find_closest_date(self.data, prev_date, prior_delta, if_not_found)
|
||||
|
||||
returns = current / previous
|
||||
if current[1] == str('nan') or previous[1] == str('nan'):
|
||||
return as_on, float('NaN')
|
||||
|
||||
returns = current[1] / previous[1]
|
||||
if compounding:
|
||||
years = _interval_to_years(interval_type, interval_value)
|
||||
returns = returns ** (1 / years)
|
||||
return (as_on if return_actual_date else original_as_on), returns - 1
|
||||
return (current[0] if return_actual_date else as_on), returns - 1
|
||||
|
||||
def calculate_rolling_returns(
|
||||
self,
|
||||
@ -274,13 +254,13 @@ class TimeSeries(TimeSeriesCore):
|
||||
|
||||
if __name__ == "__main__":
|
||||
date_series = [
|
||||
datetime.datetime(2020, 1, 1),
|
||||
datetime.datetime(2020, 1, 2),
|
||||
datetime.datetime(2020, 1, 3),
|
||||
datetime.datetime(2020, 1, 4),
|
||||
datetime.datetime(2020, 1, 7),
|
||||
datetime.datetime(2020, 1, 8),
|
||||
datetime.datetime(2020, 1, 9),
|
||||
datetime.datetime(2020, 1, 10),
|
||||
datetime.datetime(2020, 1, 11),
|
||||
datetime.datetime(2020, 1, 12),
|
||||
datetime.datetime(2020, 1, 13),
|
||||
datetime.datetime(2020, 1, 14),
|
||||
datetime.datetime(2020, 1, 17),
|
||||
datetime.datetime(2020, 1, 18),
|
||||
datetime.datetime(2020, 1, 19),
|
||||
datetime.datetime(2020, 1, 20),
|
||||
datetime.datetime(2020, 1, 22),
|
||||
]
|
||||
|
@ -4,7 +4,7 @@ import random
|
||||
from typing import Literal, Sequence
|
||||
|
||||
import pytest
|
||||
from fincal.core import FincalOptions, Frequency, Series
|
||||
from fincal.core import DateNotFoundError, FincalOptions, Frequency, Series
|
||||
from fincal.fincal import TimeSeries, create_date_series
|
||||
|
||||
THIS_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
@ -209,8 +209,10 @@ class TestReturns:
|
||||
assert round(returns[1], 4) == 5.727
|
||||
returns = ts.calculate_returns("2020-04-10", compounding=True, interval_type='days', interval_value=90)
|
||||
assert round(returns[1], 4) == 5.727
|
||||
with pytest.raises(ValueError):
|
||||
with pytest.raises(DateNotFoundError):
|
||||
ts.calculate_returns("2020-04-10", interval_type='days', interval_value=90, as_on_match='exact')
|
||||
with pytest.raises(DateNotFoundError):
|
||||
ts.calculate_returns("2020-04-10", interval_type='days', interval_value=90, prior_match='exact')
|
||||
|
||||
def test_date_formats(self):
|
||||
ts = TimeSeries(self.data, frequency='M')
|
||||
|
Loading…
Reference in New Issue
Block a user