Added custom error, refactored preprocess_timeseries

Added _find_closes_date function
This commit is contained in:
Gourav Kumar 2022-02-26 00:43:15 +05:30
parent 77845ff501
commit 1be38ce7d4

View File

@ -29,71 +29,12 @@ class AllFrequencies:
Y = Frequency("annual", "years", 1, 365, "Y")
def _preprocess_timeseries(
data: Union[
Sequence[Iterable[Union[str, datetime.datetime, float]]],
Sequence[Mapping[str, Union[float, datetime.datetime]]],
Sequence[Mapping[Union[str, datetime.datetime], float]],
Mapping[Union[str, datetime.datetime], float],
],
date_format: str,
) -> List[Tuple[datetime.datetime, float]]:
"""Converts any type of list to the correct type"""
class DateNotFoundError(Exception):
"""Exception to be raised when date is not found"""
if isinstance(data, Sequence):
if isinstance(data[0], Mapping):
if len(data[0].keys()) == 2:
current_data = [tuple(i.values()) for i in data]
elif len(data[0].keys()) == 1:
current_data = [tuple(*i.items()) for i in data]
else:
raise TypeError("Could not parse the data")
current_data = _preprocess_timeseries(current_data, date_format)
elif isinstance(data[0], Sequence):
if isinstance(data[0][0], str):
current_data = []
for i in data:
row = datetime.datetime.strptime(i[0], date_format), i[1]
current_data.append(row)
elif isinstance(data[0][0], datetime.datetime):
current_data = [(i, j) for i, j in data]
else:
raise TypeError("Could not parse the data")
else:
raise TypeError("Could not parse the data")
elif isinstance(data, Mapping):
current_data = [(k, v) for k, v in data.items()]
current_data = _preprocess_timeseries(current_data, date_format)
else:
raise TypeError("Could not parse the data")
current_data.sort()
return current_data
def _preprocess_match_options(as_on_match: str, prior_match: str, closest: str) -> datetime.timedelta:
"""Checks the arguments and returns appropriate timedelta objects"""
deltas = {"exact": 0, "previous": -1, "next": 1}
if closest not in deltas.keys():
raise ValueError(f"Invalid closest argument: {closest}")
as_on_match = closest if as_on_match == "closest" else as_on_match
prior_match = closest if prior_match == "closest" else prior_match
if as_on_match in deltas.keys():
as_on_delta = datetime.timedelta(days=deltas[as_on_match])
else:
raise ValueError(f"Invalid as_on_match argument: {as_on_match}")
if prior_match in deltas.keys():
prior_delta = datetime.timedelta(days=deltas[prior_match])
else:
raise ValueError(f"Invalid prior_match argument: {prior_match}")
return as_on_delta, prior_delta
def __init__(self, message, date):
message = f"{message}: {date}"
super().__init__(message)
def _parse_date(date: str, date_format: str = None):
@ -114,15 +55,85 @@ def _parse_date(date: str, date_format: str = None):
return date
def _interval_to_years(interval_type: Literal['years', 'months', 'day'], interval_value: int) -> int:
def _preprocess_timeseries(
data: Union[
Sequence[Iterable[Union[str, datetime.datetime, float]]],
Sequence[Mapping[str, Union[float, datetime.datetime]]],
Sequence[Mapping[Union[str, datetime.datetime], float]],
Mapping[Union[str, datetime.datetime], float],
],
date_format: str,
) -> List[Tuple[datetime.datetime, float]]:
"""Converts any type of list to the correct type"""
if isinstance(data, Mapping):
current_data = [(k, v) for k, v in data.items()]
return _preprocess_timeseries(current_data, date_format)
if not isinstance(data, Sequence):
raise TypeError("Could not parse the data")
if isinstance(data[0], Sequence):
return sorted([(_parse_date(i, date_format), j) for i, j in data])
if not isinstance(data[0], Mapping):
raise TypeError("Could not parse the data")
if len(data[0]) == 1:
current_data = [tuple(*i.items()) for i in data]
elif len(data[0]) == 2:
current_data = [tuple(i.values()) for i in data]
else:
raise TypeError("Could not parse the data")
return _preprocess_timeseries(current_data, date_format)
def _preprocess_match_options(as_on_match: str, prior_match: str, closest: str) -> datetime.timedelta:
"""Checks the arguments and returns appropriate timedelta objects"""
deltas = {"exact": 0, "previous": -1, "next": 1}
if closest not in deltas.keys():
raise ValueError(f"Invalid argument for closest: {closest}")
as_on_match = closest if as_on_match == "closest" else as_on_match
prior_match = closest if prior_match == "closest" else prior_match
if as_on_match in deltas.keys():
as_on_delta = datetime.timedelta(days=deltas[as_on_match])
else:
raise ValueError(f"Invalid as_on_match argument: {as_on_match}")
if prior_match in deltas.keys():
prior_delta = datetime.timedelta(days=deltas[prior_match])
else:
raise ValueError(f"Invalid prior_match argument: {prior_match}")
return as_on_delta, prior_delta
def _find_closest_date(data, date, delta, if_not_found):
"""Helper function to find data for the closest available date"""
row = data.get(date, None)
if row is not None:
return date, row
if delta:
return _find_closest_date(data, date + delta, delta, if_not_found)
if if_not_found == "fail":
raise DateNotFoundError("Data not found for date", date)
if if_not_found == "nan":
return date, float("NaN")
raise ValueError(f"Invalid argument for if_not_found: {if_not_found}")
def _interval_to_years(interval_type: Literal["years", "months", "day"], interval_value: int) -> int:
"""Converts any time period to years for use with compounding functions"""
day_conversion_factor = {
'years': 1,
'months': 12,
'days': 365
}
years = interval_value/day_conversion_factor[interval_type]
year_conversion_factor = {"years": 1, "months": 12, "days": 365}
years = interval_value / year_conversion_factor[interval_type]
return years