Compare commits

..

2 Commits

Author SHA1 Message Date
6851fedbca as_on_match and prior_match params for return calc
Also separated core methods & added getitem, len, head, and tail methods
2022-02-19 13:23:15 +05:30
5a51cb1a8b Capitalized frequency variable 2022-02-19 09:39:37 +05:30

View File

@ -90,8 +90,31 @@ def _preprocess_timeseries(
return current_data
class TimeSeries:
"""Container for TimeSeries objects"""
def _preprocess_match_options(as_on_match: str, prior_match: str, closest: str) -> datetime.timedelta:
"""Checks the arguments and returns appropriate timedelta objects"""
deltas = {'exact': 0, 'previous': -1, 'next': 1}
if closest not in deltas.keys():
raise ValueError(f"Invalid closest argument: {closest}")
as_on_match = closest if as_on_match == 'closest' else as_on_match
prior_match = closest if prior_match == 'closest' else prior_match
if as_on_match in deltas.keys():
as_on_delta = datetime.timedelta(days=deltas[as_on_match])
else:
raise ValueError(f"Invalid as_on_match argument: {as_on_match}")
if prior_match in deltas.keys():
prior_delta = datetime.timedelta(days=deltas[prior_match])
else:
raise ValueError(f"Invalid prior_match argument: {prior_match}")
return as_on_delta, prior_delta
class TimeSeriesCore:
"""Defines the core building blocks of a TimeSeries object"""
def __init__(
self,
@ -155,6 +178,31 @@ class TimeSeries:
printable_str = "[{}]".format(',\n '.join([str({i: self.time_series[i]}) for i in printable_data]))
return printable_str
def __getitem__(self, n):
keys = list(self.time_series.keys())
key = keys[n]
item = self.time_series[key]
return key, item
def __len__(self):
return len(self.time_series.keys())
def head(self, n: int = 6):
keys = list(self.time_series.keys())
keys = keys[:n]
result = [(key, self.time_series[key]) for key in keys]
return result
def tail(self, n: int = 6):
keys = list(self.time_series.keys())
keys = keys[-n:]
result = [(key, self.time_series[key]) for key in keys]
return result
class TimeSeries(TimeSeriesCore):
"""Container for TimeSeries objects"""
def info(self):
"""Summary info about the TimeSeries object"""
@ -199,31 +247,70 @@ class TimeSeries:
return dict(reversed(new_ts.items()))
def calculate_returns(
self, as_on: datetime.datetime, closest: str = "previous", compounding: bool = True, years: int = 1
self,
as_on: datetime.datetime,
as_on_match: str = 'closest',
prior_match: str = 'closest',
closest: str = "previous",
compounding: bool = True,
years: int = 1
) -> float:
"""Method to calculate returns for a certain time-period as on a particular date
Parameters
----------
as_on : datetime.datetime
The date as on which the return is to be calculated.
as_on_match : str, optional
The mode of matching the as_on_date. Refer closest.
prior_match : str, optional
The mode of matching the prior_date. Refer closest.
closest : str, optional
The mode of matching the closest date.
Valid values are 'exact', 'previous', 'next' and next.
compounding : bool, optional
Whether the return should be compounded annually.
years : int, optional
number of years for which the returns should be calculated
Returns
-------
The float value of the returns.
Raises
------
ValueError
* If match mode for any of the dates is exact and the exact match is not found
* If the arguments passsed for closest, as_on_match, and prior_match are invalid
Example
--------
>>> calculate_returns(datetime.date(2020, 1, 1), years=1)
"""
try:
current = self.time_series[as_on]
except KeyError:
raise ValueError("As on date not found")
prev_date = as_on - relativedelta(years=years)
if closest == "previous":
delta = -1
elif closest == "next":
delta = 1
else:
raise ValueError(f"Invalid value for closest parameter: {closest}")
as_on_delta, prior_delta = _preprocess_match_options(as_on_match, prior_match, closest)
while True:
try:
previous = self.time_series[prev_date]
current = self.time_series.get(as_on, None)
if current is not None:
break
except KeyError:
prev_date = prev_date + relativedelta(days=delta)
elif not as_on_delta:
raise ValueError("As on date not found")
as_on += as_on_delta
prev_date = as_on - relativedelta(years=years)
while True:
previous = self.time_series.get(prev_date, None)
if previous is not None:
break
elif not prior_delta:
raise ValueError("Previous date not found")
prev_date += prior_delta
returns = current / previous
if compounding:
@ -234,22 +321,24 @@ class TimeSeries:
self,
from_date: datetime.date,
to_date: datetime.date,
frequency: str = "d",
frequency: str = "D",
as_on_match: str = 'closest',
prior_match: str = 'closest',
closest: str = "previous",
compounding: bool = True,
years: int = 1,
) -> List[tuple]:
"""Calculates the rolling return"""
datediff = (to_date - from_date).days
all_dates = set()
for i in range(datediff):
all_dates.add(from_date + datetime.timedelta(days=i))
dates = all_dates.intersection(self.dates)
all_dates = create_date_series(from_date, to_date, getattr(AllFrequencies, frequency))
dates = set(all_dates)
if frequency == AllFrequencies.D:
dates = all_dates.intersection(self.dates)
rolling_returns = []
for i in dates:
returns = self.calculate_returns(as_on=i, compounding=compounding, years=years, closest=closest)
returns = self.calculate_returns(as_on=i, compounding=compounding, years=years, as_on_match=as_on_match,
prior_match=prior_match, closest=closest)
rolling_returns.append((i, returns))
self.rolling_returns = rolling_returns
return self.rolling_returns