Compare commits
2 Commits
335a6fc2e9
...
6851fedbca
Author | SHA1 | Date | |
---|---|---|---|
6851fedbca | |||
5a51cb1a8b |
141
fincal/fincal.py
141
fincal/fincal.py
@ -90,8 +90,31 @@ def _preprocess_timeseries(
|
||||
return current_data
|
||||
|
||||
|
||||
class TimeSeries:
|
||||
"""Container for TimeSeries objects"""
|
||||
def _preprocess_match_options(as_on_match: str, prior_match: str, closest: str) -> datetime.timedelta:
|
||||
"""Checks the arguments and returns appropriate timedelta objects"""
|
||||
|
||||
deltas = {'exact': 0, 'previous': -1, 'next': 1}
|
||||
if closest not in deltas.keys():
|
||||
raise ValueError(f"Invalid closest argument: {closest}")
|
||||
|
||||
as_on_match = closest if as_on_match == 'closest' else as_on_match
|
||||
prior_match = closest if prior_match == 'closest' else prior_match
|
||||
|
||||
if as_on_match in deltas.keys():
|
||||
as_on_delta = datetime.timedelta(days=deltas[as_on_match])
|
||||
else:
|
||||
raise ValueError(f"Invalid as_on_match argument: {as_on_match}")
|
||||
|
||||
if prior_match in deltas.keys():
|
||||
prior_delta = datetime.timedelta(days=deltas[prior_match])
|
||||
else:
|
||||
raise ValueError(f"Invalid prior_match argument: {prior_match}")
|
||||
|
||||
return as_on_delta, prior_delta
|
||||
|
||||
|
||||
class TimeSeriesCore:
|
||||
"""Defines the core building blocks of a TimeSeries object"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@ -155,6 +178,31 @@ class TimeSeries:
|
||||
printable_str = "[{}]".format(',\n '.join([str({i: self.time_series[i]}) for i in printable_data]))
|
||||
return printable_str
|
||||
|
||||
def __getitem__(self, n):
|
||||
keys = list(self.time_series.keys())
|
||||
key = keys[n]
|
||||
item = self.time_series[key]
|
||||
return key, item
|
||||
|
||||
def __len__(self):
|
||||
return len(self.time_series.keys())
|
||||
|
||||
def head(self, n: int = 6):
|
||||
keys = list(self.time_series.keys())
|
||||
keys = keys[:n]
|
||||
result = [(key, self.time_series[key]) for key in keys]
|
||||
return result
|
||||
|
||||
def tail(self, n: int = 6):
|
||||
keys = list(self.time_series.keys())
|
||||
keys = keys[-n:]
|
||||
result = [(key, self.time_series[key]) for key in keys]
|
||||
return result
|
||||
|
||||
|
||||
class TimeSeries(TimeSeriesCore):
|
||||
"""Container for TimeSeries objects"""
|
||||
|
||||
def info(self):
|
||||
"""Summary info about the TimeSeries object"""
|
||||
|
||||
@ -199,31 +247,70 @@ class TimeSeries:
|
||||
return dict(reversed(new_ts.items()))
|
||||
|
||||
def calculate_returns(
|
||||
self, as_on: datetime.datetime, closest: str = "previous", compounding: bool = True, years: int = 1
|
||||
self,
|
||||
as_on: datetime.datetime,
|
||||
as_on_match: str = 'closest',
|
||||
prior_match: str = 'closest',
|
||||
closest: str = "previous",
|
||||
compounding: bool = True,
|
||||
years: int = 1
|
||||
) -> float:
|
||||
"""Method to calculate returns for a certain time-period as on a particular date
|
||||
|
||||
Parameters
|
||||
----------
|
||||
as_on : datetime.datetime
|
||||
The date as on which the return is to be calculated.
|
||||
|
||||
as_on_match : str, optional
|
||||
The mode of matching the as_on_date. Refer closest.
|
||||
|
||||
prior_match : str, optional
|
||||
The mode of matching the prior_date. Refer closest.
|
||||
|
||||
closest : str, optional
|
||||
The mode of matching the closest date.
|
||||
Valid values are 'exact', 'previous', 'next' and next.
|
||||
|
||||
compounding : bool, optional
|
||||
Whether the return should be compounded annually.
|
||||
|
||||
years : int, optional
|
||||
number of years for which the returns should be calculated
|
||||
|
||||
Returns
|
||||
-------
|
||||
The float value of the returns.
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
* If match mode for any of the dates is exact and the exact match is not found
|
||||
* If the arguments passsed for closest, as_on_match, and prior_match are invalid
|
||||
|
||||
Example
|
||||
--------
|
||||
>>> calculate_returns(datetime.date(2020, 1, 1), years=1)
|
||||
"""
|
||||
|
||||
try:
|
||||
current = self.time_series[as_on]
|
||||
except KeyError:
|
||||
raise ValueError("As on date not found")
|
||||
|
||||
prev_date = as_on - relativedelta(years=years)
|
||||
if closest == "previous":
|
||||
delta = -1
|
||||
elif closest == "next":
|
||||
delta = 1
|
||||
else:
|
||||
raise ValueError(f"Invalid value for closest parameter: {closest}")
|
||||
as_on_delta, prior_delta = _preprocess_match_options(as_on_match, prior_match, closest)
|
||||
|
||||
while True:
|
||||
try:
|
||||
previous = self.time_series[prev_date]
|
||||
current = self.time_series.get(as_on, None)
|
||||
if current is not None:
|
||||
break
|
||||
except KeyError:
|
||||
prev_date = prev_date + relativedelta(days=delta)
|
||||
elif not as_on_delta:
|
||||
raise ValueError("As on date not found")
|
||||
as_on += as_on_delta
|
||||
|
||||
prev_date = as_on - relativedelta(years=years)
|
||||
while True:
|
||||
previous = self.time_series.get(prev_date, None)
|
||||
if previous is not None:
|
||||
break
|
||||
elif not prior_delta:
|
||||
raise ValueError("Previous date not found")
|
||||
prev_date += prior_delta
|
||||
|
||||
returns = current / previous
|
||||
if compounding:
|
||||
@ -234,22 +321,24 @@ class TimeSeries:
|
||||
self,
|
||||
from_date: datetime.date,
|
||||
to_date: datetime.date,
|
||||
frequency: str = "d",
|
||||
frequency: str = "D",
|
||||
as_on_match: str = 'closest',
|
||||
prior_match: str = 'closest',
|
||||
closest: str = "previous",
|
||||
compounding: bool = True,
|
||||
years: int = 1,
|
||||
) -> List[tuple]:
|
||||
"""Calculates the rolling return"""
|
||||
|
||||
datediff = (to_date - from_date).days
|
||||
all_dates = set()
|
||||
for i in range(datediff):
|
||||
all_dates.add(from_date + datetime.timedelta(days=i))
|
||||
dates = all_dates.intersection(self.dates)
|
||||
all_dates = create_date_series(from_date, to_date, getattr(AllFrequencies, frequency))
|
||||
dates = set(all_dates)
|
||||
if frequency == AllFrequencies.D:
|
||||
dates = all_dates.intersection(self.dates)
|
||||
|
||||
rolling_returns = []
|
||||
for i in dates:
|
||||
returns = self.calculate_returns(as_on=i, compounding=compounding, years=years, closest=closest)
|
||||
returns = self.calculate_returns(as_on=i, compounding=compounding, years=years, as_on_match=as_on_match,
|
||||
prior_match=prior_match, closest=closest)
|
||||
rolling_returns.append((i, returns))
|
||||
self.rolling_returns = rolling_returns
|
||||
return self.rolling_returns
|
||||
|
Loading…
Reference in New Issue
Block a user