PyFacts/fincal/utils.py

177 lines
6.3 KiB
Python
Raw Normal View History

import datetime
from dataclasses import dataclass
from typing import List, Literal, Mapping, Sequence, Tuple
from .exceptions import DateNotFoundError, DateOutOfRangeError
@dataclass
class FincalOptions:
date_format: str = "%Y-%m-%d"
closest: str = "before" # after
traded_days: int = 365
get_closest: str = "exact"
2022-04-08 05:19:59 +00:00
def _parse_date(date: str, date_format: str = None) -> datetime.datetime:
"""Parses date and handles errors
Parameters:
-----------
date: str | datetime.date
The date to be parsed.
If the date passed is already a datetime object, it will return it unprocessed.
date_format: str, default None
The format of the date string in datetime.strftime friendly format.
If format is None, format in FincalOptions.date_format will be used.
Returns:
--------
Returns a datetime.datetime object.
Raises:
-------
TypeError: If the is not a date-like string
ValueError: If the date could not be parsed with the given format
"""
if isinstance(date, (datetime.datetime, datetime.date)):
return datetime.datetime.fromordinal(date.toordinal())
if date_format is None:
date_format = FincalOptions.date_format
try:
date = datetime.datetime.strptime(date, date_format)
except TypeError:
raise ValueError("Date does not seem to be valid date-like string")
except ValueError:
raise ValueError("Date could not be parsed. Have you set the correct date format in FincalOptions.date_format?")
return date
def _preprocess_timeseries(
data: Sequence[Tuple[str | datetime.datetime, float]]
2022-04-05 05:13:53 +00:00
| Sequence[Mapping[str | datetime.datetime, float]]
| Mapping[str | datetime.datetime, float],
date_format: str,
) -> List[Tuple[datetime.datetime, float]]:
2022-04-08 05:19:59 +00:00
"""Converts any type of list to the TimeSeries friendly format.
This function is internally called by the __init__ function of the TimeSeriesCore class
The TimeSeries class can internally process a list of Tuples.
However, users have the option of passing a variety of types.
This function preprocesses the data and converts it into the relevant format.
If the data is a dictionary, it will be converted using .items() iteration.
If the data is not a dictionary or a list, it will raise an error.
If the data is of list type:
* If the first item is also of list type, it will be parsed as a list of lists
* If the first item is a dictionary with one key, then key will be parsed as date
* If the first item is a dictionary with two keys, then first key will be date and second will be value
* If the first element is of another type, it will raise an error
The final return value is sorted by date
Parameters:
-----------
Data:
The data for the time series. Can be a dictionary, a list of tuples, or a list of dictionaries.
date_format: str
The format of the date in strftime friendly format.
Returns:
-----------
Returns a list of Tuples where the first element of each tuple is of datetime.datetime class
and the second element is of float class
Raises:
--------
TypeError: If the data is not in a format which can be parsed.
"""
if isinstance(data, Mapping):
2022-04-05 05:13:53 +00:00
current_data: List[tuple] = [(k, v) for k, v in data.items()]
return _preprocess_timeseries(current_data, date_format)
2022-04-08 05:19:59 +00:00
# If data is not a dictionary or list, it cannot be parsed
if not isinstance(data, Sequence):
raise TypeError("Could not parse the data")
if isinstance(data[0], Sequence):
return sorted([(_parse_date(i, date_format), j) for i, j in data])
2022-04-08 05:19:59 +00:00
# If first element is not a dictionary or tuple, it cannot be parsed
if not isinstance(data[0], Mapping):
raise TypeError("Could not parse the data")
if len(data[0]) == 1:
2022-04-05 05:13:53 +00:00
current_data: List[tuple] = [tuple(*i.items()) for i in data]
elif len(data[0]) == 2:
2022-04-05 05:13:53 +00:00
current_data: List[tuple] = [tuple(i.values()) for i in data]
else:
raise TypeError("Could not parse the data")
return _preprocess_timeseries(current_data, date_format)
2022-04-05 05:13:53 +00:00
def _preprocess_match_options(as_on_match: str, prior_match: str, closest: str) -> Tuple[datetime.timedelta]:
"""Checks the arguments and returns appropriate timedelta objects"""
deltas = {"exact": 0, "previous": -1, "next": 1}
if closest not in deltas.keys():
raise ValueError(f"Invalid argument for closest: {closest}")
2022-04-05 05:13:53 +00:00
as_on_match: str = closest if as_on_match == "closest" else as_on_match
prior_match: str = closest if prior_match == "closest" else prior_match
if as_on_match in deltas.keys():
2022-04-05 05:13:53 +00:00
as_on_delta: datetime.timedelta = datetime.timedelta(days=deltas[as_on_match])
else:
raise ValueError(f"Invalid as_on_match argument: {as_on_match}")
if prior_match in deltas.keys():
2022-04-05 05:13:53 +00:00
prior_delta: datetime.timedelta = datetime.timedelta(days=deltas[prior_match])
else:
raise ValueError(f"Invalid prior_match argument: {prior_match}")
return as_on_delta, prior_delta
def _find_closest_date(
data: Mapping[datetime.datetime, float],
date: datetime.datetime,
limit_days: int,
delta: datetime.timedelta,
if_not_found: Literal["fail", "nan"],
):
"""Helper function to find data for the closest available date"""
if delta.days < 0 and date < min(data):
raise DateOutOfRangeError(date, "min")
if delta.days > 0 and date > max(data):
raise DateOutOfRangeError(date, "max")
2022-04-05 05:13:53 +00:00
row: tuple = data.get(date, None)
if row is not None:
return date, row
if delta and limit_days != 0:
return _find_closest_date(data, date + delta, limit_days - 1, delta, if_not_found)
if if_not_found == "fail":
raise DateNotFoundError("Data not found for date", date)
if if_not_found == "nan":
return date, float("NaN")
raise ValueError(f"Invalid argument for if_not_found: {if_not_found}")
2022-03-30 17:36:45 +00:00
def _interval_to_years(interval_type: Literal["years", "months", "day"], interval_value: int) -> float:
"""Converts any time period to years for use with compounding functions"""
2022-04-05 05:13:53 +00:00
year_conversion_factor: dict = {"years": 1, "months": 12, "days": 365}
years: float = interval_value / year_conversion_factor[interval_type]
return years