2022-03-11 04:10:37 +00:00
|
|
|
import datetime
|
|
|
|
|
|
|
|
import pytest
|
2023-03-25 13:07:06 +00:00
|
|
|
|
2022-06-05 17:36:12 +00:00
|
|
|
from pyfacts import (
|
2022-04-09 06:28:35 +00:00
|
|
|
AllFrequencies,
|
|
|
|
Frequency,
|
2022-07-24 03:18:03 +00:00
|
|
|
PyfactsOptions,
|
2022-04-09 06:28:35 +00:00
|
|
|
TimeSeries,
|
|
|
|
create_date_series,
|
|
|
|
)
|
2022-06-05 17:36:12 +00:00
|
|
|
from pyfacts.exceptions import DateNotFoundError
|
2022-03-11 04:10:37 +00:00
|
|
|
|
|
|
|
|
2022-04-03 09:57:07 +00:00
|
|
|
class TestDateSeries:
|
|
|
|
def test_daily(self):
|
|
|
|
start_date = datetime.datetime(2020, 1, 1)
|
|
|
|
end_date = datetime.datetime(2020, 12, 31)
|
|
|
|
d = create_date_series(start_date, end_date, frequency="D")
|
|
|
|
assert len(d) == 366
|
|
|
|
|
|
|
|
start_date = datetime.datetime(2017, 1, 1)
|
|
|
|
end_date = datetime.datetime(2017, 12, 31)
|
|
|
|
d = create_date_series(start_date, end_date, frequency="D")
|
|
|
|
assert len(d) == 365
|
|
|
|
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
create_date_series(start_date, end_date, frequency="D", eomonth=True)
|
|
|
|
|
|
|
|
def test_monthly(self):
|
|
|
|
start_date = datetime.datetime(2020, 1, 1)
|
|
|
|
end_date = datetime.datetime(2020, 12, 31)
|
2023-07-16 14:24:14 +00:00
|
|
|
d = create_date_series(start_date, end_date, frequency="M", ensure_coverage=False)
|
2022-04-03 09:57:07 +00:00
|
|
|
assert len(d) == 12
|
|
|
|
|
|
|
|
d = create_date_series(start_date, end_date, frequency="M", eomonth=True)
|
|
|
|
assert datetime.datetime(2020, 2, 29) in d
|
|
|
|
|
|
|
|
start_date = datetime.datetime(2020, 1, 31)
|
|
|
|
d = create_date_series(start_date, end_date, frequency="M")
|
|
|
|
assert datetime.datetime(2020, 2, 29) in d
|
|
|
|
assert datetime.datetime(2020, 8, 31) in d
|
|
|
|
assert datetime.datetime(2020, 10, 30) not in d
|
|
|
|
|
|
|
|
start_date = datetime.datetime(2020, 2, 29)
|
|
|
|
d = create_date_series(start_date, end_date, frequency="M")
|
|
|
|
assert len(d) == 11
|
|
|
|
assert datetime.datetime(2020, 2, 29) in d
|
|
|
|
assert datetime.datetime(2020, 8, 31) not in d
|
|
|
|
assert datetime.datetime(2020, 10, 29) in d
|
|
|
|
|
|
|
|
def test_quarterly(self):
|
|
|
|
start_date = datetime.datetime(2018, 1, 1)
|
|
|
|
end_date = datetime.datetime(2020, 12, 31)
|
|
|
|
d = create_date_series(start_date, end_date, frequency="Q")
|
|
|
|
assert len(d) == 12
|
|
|
|
|
|
|
|
d = create_date_series(start_date, end_date, frequency="Q", eomonth=True)
|
|
|
|
assert datetime.datetime(2020, 4, 30) in d
|
|
|
|
|
|
|
|
start_date = datetime.datetime(2020, 1, 31)
|
|
|
|
d = create_date_series(start_date, end_date, frequency="Q")
|
|
|
|
assert len(d) == 4
|
|
|
|
assert datetime.datetime(2020, 2, 29) not in d
|
|
|
|
assert max(d) == datetime.datetime(2020, 10, 31)
|
|
|
|
|
|
|
|
start_date = datetime.datetime(2020, 2, 29)
|
|
|
|
d = create_date_series(start_date, end_date, frequency="Q")
|
|
|
|
assert datetime.datetime(2020, 2, 29) in d
|
|
|
|
assert datetime.datetime(2020, 8, 31) not in d
|
|
|
|
assert datetime.datetime(2020, 11, 29) in d
|
|
|
|
|
|
|
|
d = create_date_series(start_date, end_date, frequency="Q", eomonth=True)
|
|
|
|
assert datetime.datetime(2020, 11, 30) in d
|
|
|
|
|
|
|
|
|
|
|
|
class TestTimeSeriesCreation:
|
2022-05-08 12:39:39 +00:00
|
|
|
def test_creation_with_list_of_tuples(self, create_test_data):
|
2022-04-03 09:57:07 +00:00
|
|
|
ts_data = create_test_data(frequency=AllFrequencies.D, num=50)
|
|
|
|
ts = TimeSeries(ts_data, frequency="D")
|
|
|
|
assert len(ts) == 50
|
|
|
|
assert isinstance(ts.frequency, Frequency)
|
|
|
|
assert ts.frequency.days == 1
|
|
|
|
|
2022-05-08 12:39:39 +00:00
|
|
|
def test_creation_with_string_dates(self, create_test_data):
|
2022-04-03 09:57:07 +00:00
|
|
|
ts_data = create_test_data(frequency=AllFrequencies.D, num=50)
|
|
|
|
ts_data1 = [(dt.strftime("%Y-%m-%d"), val) for dt, val in ts_data]
|
|
|
|
ts = TimeSeries(ts_data1, frequency="D")
|
|
|
|
datetime.datetime(2017, 1, 1) in ts
|
|
|
|
|
|
|
|
ts_data1 = [(dt.strftime("%d-%m-%Y"), val) for dt, val in ts_data]
|
|
|
|
ts = TimeSeries(ts_data1, frequency="D", date_format="%d-%m-%Y")
|
|
|
|
datetime.datetime(2017, 1, 1) in ts
|
|
|
|
|
|
|
|
ts_data1 = [(dt.strftime("%m-%d-%Y"), val) for dt, val in ts_data]
|
|
|
|
ts = TimeSeries(ts_data1, frequency="D", date_format="%m-%d-%Y")
|
|
|
|
datetime.datetime(2017, 1, 1) in ts
|
|
|
|
|
|
|
|
ts_data1 = [(dt.strftime("%m-%d-%Y %H:%M"), val) for dt, val in ts_data]
|
|
|
|
ts = TimeSeries(ts_data1, frequency="D", date_format="%m-%d-%Y %H:%M")
|
|
|
|
datetime.datetime(2017, 1, 1, 0, 0) in ts
|
|
|
|
|
2022-05-08 12:39:39 +00:00
|
|
|
def test_creation_with_list_of_dicts(self, create_test_data):
|
2022-04-03 09:57:07 +00:00
|
|
|
ts_data = create_test_data(frequency=AllFrequencies.D, num=50)
|
|
|
|
ts_data1 = [{"date": dt.strftime("%Y-%m-%d"), "value": val} for dt, val in ts_data]
|
|
|
|
ts = TimeSeries(ts_data1, frequency="D")
|
|
|
|
datetime.datetime(2017, 1, 1) in ts
|
|
|
|
|
2022-05-08 12:39:39 +00:00
|
|
|
def test_creation_with_list_of_lists(self, create_test_data):
|
2022-04-03 09:57:07 +00:00
|
|
|
ts_data = create_test_data(frequency=AllFrequencies.D, num=50)
|
|
|
|
ts_data1 = [[dt.strftime("%Y-%m-%d"), val] for dt, val in ts_data]
|
|
|
|
ts = TimeSeries(ts_data1, frequency="D")
|
|
|
|
datetime.datetime(2017, 1, 1) in ts
|
|
|
|
|
2022-05-08 12:39:39 +00:00
|
|
|
def test_creation_with_dict(self, create_test_data):
|
2022-04-03 09:57:07 +00:00
|
|
|
ts_data = create_test_data(frequency=AllFrequencies.D, num=50)
|
|
|
|
ts_data1 = [{dt.strftime("%Y-%m-%d"): val} for dt, val in ts_data]
|
|
|
|
ts = TimeSeries(ts_data1, frequency="D")
|
|
|
|
datetime.datetime(2017, 1, 1) in ts
|
|
|
|
|
|
|
|
|
|
|
|
class TestTimeSeriesBasics:
|
2022-05-08 12:39:39 +00:00
|
|
|
def test_fill(self, create_test_data):
|
2022-06-05 17:36:12 +00:00
|
|
|
PyfactsOptions.get_closest = "exact"
|
2022-04-03 09:57:07 +00:00
|
|
|
ts_data = create_test_data(frequency=AllFrequencies.D, num=50, skip_weekends=True)
|
|
|
|
ts = TimeSeries(ts_data, frequency="D")
|
|
|
|
ffill_data = ts.ffill()
|
|
|
|
assert len(ffill_data) == 68
|
|
|
|
|
|
|
|
ffill_data = ts.ffill(inplace=True)
|
|
|
|
assert ffill_data is None
|
|
|
|
assert len(ts) == 68
|
|
|
|
|
|
|
|
ts_data = create_test_data(frequency=AllFrequencies.D, num=50, skip_weekends=True)
|
|
|
|
ts = TimeSeries(ts_data, frequency="D")
|
|
|
|
bfill_data = ts.bfill()
|
|
|
|
assert len(bfill_data) == 68
|
|
|
|
|
|
|
|
bfill_data = ts.bfill(inplace=True)
|
|
|
|
assert bfill_data is None
|
|
|
|
assert len(ts) == 68
|
|
|
|
|
2022-04-04 18:18:06 +00:00
|
|
|
data = [("2021-01-01", 220), ("2021-01-02", 230), ("2021-01-04", 240)]
|
2022-04-03 09:57:07 +00:00
|
|
|
ts = TimeSeries(data, frequency="D")
|
|
|
|
ff = ts.ffill()
|
|
|
|
assert ff["2021-01-03"][1] == 230
|
|
|
|
|
|
|
|
bf = ts.bfill()
|
|
|
|
assert bf["2021-01-03"][1] == 240
|
|
|
|
|
2022-05-08 12:39:39 +00:00
|
|
|
def test_fill_weekly(self, create_test_data):
|
2022-04-05 05:13:31 +00:00
|
|
|
ts_data = create_test_data(frequency=AllFrequencies.W, num=10)
|
|
|
|
ts_data.pop(2)
|
|
|
|
ts_data.pop(6)
|
|
|
|
ts = TimeSeries(ts_data, frequency="W")
|
|
|
|
assert len(ts) == 8
|
|
|
|
|
|
|
|
ff = ts.ffill()
|
|
|
|
assert len(ff) == 10
|
|
|
|
assert "2017-01-15" in ff
|
|
|
|
assert ff["2017-01-15"][1] == ff["2017-01-08"][1]
|
|
|
|
|
|
|
|
bf = ts.bfill()
|
|
|
|
assert len(ff) == 10
|
|
|
|
assert "2017-01-15" in bf
|
|
|
|
assert bf["2017-01-15"][1] == bf["2017-01-22"][1]
|
|
|
|
|
2022-05-10 04:21:12 +00:00
|
|
|
def test_fill_monthly(self, create_test_data):
|
|
|
|
ts_data = create_test_data(frequency=AllFrequencies.M, num=10)
|
|
|
|
ts_data.pop(2)
|
|
|
|
ts_data.pop(6)
|
|
|
|
ts = TimeSeries(ts_data, frequency="M")
|
|
|
|
assert len(ts) == 8
|
|
|
|
|
|
|
|
ff = ts.ffill()
|
|
|
|
assert len(ff) == 10
|
|
|
|
assert "2017-03-01" in ff
|
|
|
|
assert ff["2017-03-01"][1] == ff["2017-02-01"][1]
|
|
|
|
|
|
|
|
bf = ts.bfill()
|
|
|
|
assert len(bf) == 10
|
|
|
|
assert "2017-08-01" in bf
|
|
|
|
assert bf["2017-08-01"][1] == bf["2017-09-01"][1]
|
|
|
|
|
|
|
|
def test_fill_eomonthly(self, create_test_data):
|
|
|
|
ts_data = create_test_data(frequency=AllFrequencies.M, num=10, eomonth=True)
|
|
|
|
ts_data.pop(2)
|
|
|
|
ts_data.pop(6)
|
|
|
|
ts = TimeSeries(ts_data, frequency="M")
|
|
|
|
assert len(ts) == 8
|
|
|
|
|
|
|
|
ff = ts.ffill()
|
|
|
|
assert len(ff) == 10
|
|
|
|
assert "2017-03-31" in ff
|
|
|
|
assert ff["2017-03-31"][1] == ff["2017-02-28"][1]
|
|
|
|
|
|
|
|
bf = ts.bfill()
|
|
|
|
assert len(bf) == 10
|
|
|
|
assert "2017-08-31" in bf
|
|
|
|
assert bf["2017-08-31"][1] == bf["2017-09-30"][1]
|
|
|
|
|
2022-05-12 05:10:47 +00:00
|
|
|
def test_fill_quarterly(self, create_test_data):
|
|
|
|
ts_data = create_test_data(frequency=AllFrequencies.Q, num=10, eomonth=True)
|
|
|
|
ts_data.pop(2)
|
|
|
|
ts_data.pop(6)
|
|
|
|
ts = TimeSeries(ts_data, frequency="Q")
|
|
|
|
assert len(ts) == 8
|
|
|
|
|
|
|
|
ff = ts.ffill()
|
|
|
|
assert len(ff) == 10
|
|
|
|
assert "2017-07-31" in ff
|
|
|
|
assert ff["2017-07-31"][1] == ff["2017-04-30"][1]
|
|
|
|
|
|
|
|
bf = ts.bfill()
|
|
|
|
assert len(bf) == 10
|
|
|
|
assert "2018-10-31" in bf
|
|
|
|
assert bf["2018-10-31"][1] == bf["2019-01-31"][1]
|
|
|
|
|
2022-04-03 09:57:07 +00:00
|
|
|
|
2022-03-11 04:10:37 +00:00
|
|
|
class TestReturns:
|
2022-05-08 12:39:39 +00:00
|
|
|
def test_returns_calc(self, create_test_data):
|
2022-04-03 09:57:07 +00:00
|
|
|
ts_data = create_test_data(AllFrequencies.D, skip_weekends=True)
|
|
|
|
ts = TimeSeries(ts_data, "D")
|
2022-03-11 04:10:37 +00:00
|
|
|
returns = ts.calculate_returns(
|
2022-03-13 08:59:13 +00:00
|
|
|
"2020-01-01", annual_compounded_returns=False, return_period_unit="years", return_period_value=1
|
2022-03-11 04:10:37 +00:00
|
|
|
)
|
|
|
|
assert round(returns[1], 6) == 0.112913
|
|
|
|
|
|
|
|
returns = ts.calculate_returns(
|
2022-03-13 08:59:13 +00:00
|
|
|
"2020-04-01", annual_compounded_returns=False, return_period_unit="months", return_period_value=3
|
2022-03-11 04:10:37 +00:00
|
|
|
)
|
|
|
|
assert round(returns[1], 6) == 0.015908
|
|
|
|
|
|
|
|
returns = ts.calculate_returns(
|
2022-03-13 08:59:13 +00:00
|
|
|
"2020-04-01", annual_compounded_returns=True, return_period_unit="months", return_period_value=3
|
2022-03-11 04:10:37 +00:00
|
|
|
)
|
|
|
|
assert round(returns[1], 6) == 0.065167
|
|
|
|
|
|
|
|
returns = ts.calculate_returns(
|
2022-03-13 08:59:13 +00:00
|
|
|
"2020-04-01", annual_compounded_returns=False, return_period_unit="days", return_period_value=90
|
2022-03-11 04:10:37 +00:00
|
|
|
)
|
|
|
|
assert round(returns[1], 6) == 0.017673
|
|
|
|
|
|
|
|
returns = ts.calculate_returns(
|
2022-03-13 08:59:13 +00:00
|
|
|
"2020-04-01", annual_compounded_returns=True, return_period_unit="days", return_period_value=90
|
2022-03-11 04:10:37 +00:00
|
|
|
)
|
|
|
|
assert round(returns[1], 6) == 0.073632
|
|
|
|
|
|
|
|
with pytest.raises(DateNotFoundError):
|
2022-03-13 08:59:13 +00:00
|
|
|
ts.calculate_returns("2020-04-04", return_period_unit="days", return_period_value=90, as_on_match="exact")
|
2022-03-11 04:10:37 +00:00
|
|
|
with pytest.raises(DateNotFoundError):
|
2022-07-24 03:18:03 +00:00
|
|
|
ts.calculate_returns("2020-04-08", return_period_unit="months", return_period_value=1, prior_match="exact")
|
2022-03-11 04:10:37 +00:00
|
|
|
|
2022-05-08 12:39:39 +00:00
|
|
|
def test_date_formats(self, create_test_data):
|
2022-04-03 09:57:07 +00:00
|
|
|
ts_data = create_test_data(AllFrequencies.D, skip_weekends=True)
|
|
|
|
ts = TimeSeries(ts_data, "D")
|
2022-06-05 17:36:12 +00:00
|
|
|
PyfactsOptions.date_format = "%d-%m-%Y"
|
2022-03-11 04:10:37 +00:00
|
|
|
with pytest.raises(ValueError):
|
2022-03-13 08:59:13 +00:00
|
|
|
ts.calculate_returns(
|
|
|
|
"2020-04-10", annual_compounded_returns=True, return_period_unit="days", return_period_value=90
|
|
|
|
)
|
2022-03-11 04:10:37 +00:00
|
|
|
|
2022-03-13 08:59:13 +00:00
|
|
|
returns1 = ts.calculate_returns(
|
|
|
|
"2020-04-01", return_period_unit="days", return_period_value=90, date_format="%Y-%m-%d"
|
|
|
|
)
|
|
|
|
returns2 = ts.calculate_returns("01-04-2020", return_period_unit="days", return_period_value=90)
|
2022-03-11 04:10:37 +00:00
|
|
|
assert round(returns1[1], 6) == round(returns2[1], 6) == 0.073632
|
|
|
|
|
2022-06-05 17:36:12 +00:00
|
|
|
PyfactsOptions.date_format = "%m-%d-%Y"
|
2022-03-11 04:10:37 +00:00
|
|
|
with pytest.raises(ValueError):
|
2022-03-13 08:59:13 +00:00
|
|
|
ts.calculate_returns(
|
|
|
|
"2020-04-01", annual_compounded_returns=True, return_period_unit="days", return_period_value=90
|
|
|
|
)
|
2022-03-11 04:10:37 +00:00
|
|
|
|
2022-03-13 08:59:13 +00:00
|
|
|
returns1 = ts.calculate_returns(
|
|
|
|
"2020-04-01", return_period_unit="days", return_period_value=90, date_format="%Y-%m-%d"
|
|
|
|
)
|
|
|
|
returns2 = ts.calculate_returns("04-01-2020", return_period_unit="days", return_period_value=90)
|
2022-03-11 04:10:37 +00:00
|
|
|
assert round(returns1[1], 6) == round(returns2[1], 6) == 0.073632
|
|
|
|
|
2022-05-08 12:39:39 +00:00
|
|
|
def test_limits(self, create_test_data):
|
2022-06-05 17:36:12 +00:00
|
|
|
PyfactsOptions.date_format = "%Y-%m-%d"
|
2022-04-03 09:57:07 +00:00
|
|
|
ts_data = create_test_data(AllFrequencies.D)
|
|
|
|
ts = TimeSeries(ts_data, "D")
|
2022-03-11 04:10:37 +00:00
|
|
|
with pytest.raises(DateNotFoundError):
|
2022-03-13 08:59:13 +00:00
|
|
|
ts.calculate_returns("2020-11-25", return_period_unit="days", return_period_value=90, closest_max_days=10)
|
|
|
|
|
2022-04-03 19:18:55 +00:00
|
|
|
def test_rolling_returns(self):
|
2022-05-12 05:10:47 +00:00
|
|
|
# To-do
|
2022-04-03 19:18:55 +00:00
|
|
|
return True
|
|
|
|
|
|
|
|
|
|
|
|
class TestExpand:
|
2022-05-08 12:39:39 +00:00
|
|
|
def test_weekly_to_daily(self, create_test_data):
|
2022-05-12 05:10:47 +00:00
|
|
|
ts_data = create_test_data(AllFrequencies.W, num=10)
|
2022-04-03 19:18:55 +00:00
|
|
|
ts = TimeSeries(ts_data, "W")
|
|
|
|
expanded_ts = ts.expand("D", "ffill")
|
|
|
|
assert len(expanded_ts) == 64
|
|
|
|
assert expanded_ts.frequency.name == "daily"
|
|
|
|
assert expanded_ts.iloc[0][1] == expanded_ts.iloc[1][1]
|
|
|
|
|
2022-05-08 12:39:39 +00:00
|
|
|
def test_weekly_to_daily_no_weekends(self, create_test_data):
|
2022-05-12 05:10:47 +00:00
|
|
|
ts_data = create_test_data(AllFrequencies.W, num=10)
|
2022-04-03 19:18:55 +00:00
|
|
|
ts = TimeSeries(ts_data, "W")
|
|
|
|
expanded_ts = ts.expand("D", "ffill", skip_weekends=True)
|
2022-04-04 18:18:06 +00:00
|
|
|
assert len(expanded_ts) == 46
|
2022-04-03 19:18:55 +00:00
|
|
|
assert expanded_ts.frequency.name == "daily"
|
|
|
|
assert expanded_ts.iloc[0][1] == expanded_ts.iloc[1][1]
|
|
|
|
|
2022-05-08 12:39:39 +00:00
|
|
|
def test_monthly_to_daily(self, create_test_data):
|
2022-05-12 05:10:47 +00:00
|
|
|
ts_data = create_test_data(AllFrequencies.M, num=6)
|
2022-04-03 19:18:55 +00:00
|
|
|
ts = TimeSeries(ts_data, "M")
|
|
|
|
expanded_ts = ts.expand("D", "ffill")
|
|
|
|
assert len(expanded_ts) == 152
|
|
|
|
assert expanded_ts.frequency.name == "daily"
|
|
|
|
assert expanded_ts.iloc[0][1] == expanded_ts.iloc[1][1]
|
|
|
|
|
2022-05-08 12:39:39 +00:00
|
|
|
def test_monthly_to_daily_no_weekends(self, create_test_data):
|
2022-05-12 05:10:47 +00:00
|
|
|
ts_data = create_test_data(AllFrequencies.M, num=6)
|
2022-04-03 19:18:55 +00:00
|
|
|
ts = TimeSeries(ts_data, "M")
|
|
|
|
expanded_ts = ts.expand("D", "ffill", skip_weekends=True)
|
|
|
|
assert len(expanded_ts) == 109
|
|
|
|
assert expanded_ts.frequency.name == "daily"
|
|
|
|
assert expanded_ts.iloc[0][1] == expanded_ts.iloc[1][1]
|
|
|
|
|
2022-05-08 12:39:39 +00:00
|
|
|
def test_monthly_to_weekly(self, create_test_data):
|
2022-05-12 05:10:47 +00:00
|
|
|
ts_data = create_test_data(AllFrequencies.M, num=6)
|
2022-04-03 19:18:55 +00:00
|
|
|
ts = TimeSeries(ts_data, "M")
|
|
|
|
expanded_ts = ts.expand("W", "ffill")
|
2023-07-16 14:24:14 +00:00
|
|
|
assert len(expanded_ts) == 23
|
2022-04-03 19:18:55 +00:00
|
|
|
assert expanded_ts.frequency.name == "weekly"
|
|
|
|
assert expanded_ts.iloc[0][1] == expanded_ts.iloc[1][1]
|
|
|
|
|
2022-05-08 12:39:39 +00:00
|
|
|
def test_yearly_to_monthly(self, create_test_data):
|
2022-05-12 05:10:47 +00:00
|
|
|
ts_data = create_test_data(AllFrequencies.Y, num=5)
|
2022-04-03 19:18:55 +00:00
|
|
|
ts = TimeSeries(ts_data, "Y")
|
|
|
|
expanded_ts = ts.expand("M", "ffill")
|
|
|
|
assert len(expanded_ts) == 49
|
|
|
|
assert expanded_ts.frequency.name == "monthly"
|
|
|
|
assert expanded_ts.iloc[0][1] == expanded_ts.iloc[1][1]
|
|
|
|
|
2022-03-13 08:59:13 +00:00
|
|
|
|
2022-05-12 05:10:47 +00:00
|
|
|
class TestShrink:
|
2023-03-25 13:07:06 +00:00
|
|
|
def test_daily_to_smaller(self, create_test_data):
|
|
|
|
ts_data = create_test_data(AllFrequencies.D, num=1000)
|
|
|
|
ts = TimeSeries(ts_data, "D")
|
|
|
|
shrunk_ts_w = ts.shrink("W", "ffill")
|
|
|
|
shrunk_ts_m = ts.shrink("M", "ffill")
|
2023-07-16 14:24:14 +00:00
|
|
|
assert len(shrunk_ts_w) == 144
|
2023-03-25 13:07:06 +00:00
|
|
|
assert len(shrunk_ts_m) == 34
|
|
|
|
|
|
|
|
def test_weekly_to_smaller(self, create_test_data):
|
|
|
|
ts_data = create_test_data(AllFrequencies.W, num=300)
|
|
|
|
ts = TimeSeries(ts_data, "W")
|
|
|
|
tsm = ts.shrink("M", "ffill")
|
|
|
|
assert len(tsm) == 70
|
|
|
|
tsmeo = ts.shrink("M", "ffill", eomonth=True)
|
|
|
|
assert len(tsmeo) == 69
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
ts.shrink("D", "ffill")
|
2022-05-12 05:10:47 +00:00
|
|
|
|
|
|
|
|
|
|
|
class TestMeanReturns:
|
2022-05-16 17:00:08 +00:00
|
|
|
# TODO
|
2022-05-12 05:10:47 +00:00
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
class TestReadCsv:
|
2022-05-16 17:00:08 +00:00
|
|
|
# TODO
|
2022-05-12 05:10:47 +00:00
|
|
|
pass
|
|
|
|
|
|
|
|
|
2022-05-24 15:41:46 +00:00
|
|
|
class TestTransform:
|
2022-05-25 04:32:25 +00:00
|
|
|
def test_daily_to_weekly(self, create_test_data):
|
|
|
|
ts_data = create_test_data(AllFrequencies.D, num=782, skip_weekends=True)
|
|
|
|
ts = TimeSeries(ts_data, "D")
|
2023-07-17 04:52:43 +00:00
|
|
|
tst = ts.transform("W", "mean", ensure_coverage=False)
|
2022-05-25 04:32:25 +00:00
|
|
|
assert isinstance(tst, TimeSeries)
|
2023-07-16 14:24:14 +00:00
|
|
|
assert len(tst) == 157
|
2022-05-25 04:32:25 +00:00
|
|
|
assert "2017-01-30" in tst
|
|
|
|
assert tst.iloc[4] == (datetime.datetime(2017, 1, 30), 1021.19)
|
|
|
|
|
|
|
|
def test_daily_to_monthly(self, create_test_data):
|
|
|
|
ts_data = create_test_data(AllFrequencies.D, num=782, skip_weekends=False)
|
|
|
|
ts = TimeSeries(ts_data, "D")
|
|
|
|
tst = ts.transform("M", "mean")
|
|
|
|
assert isinstance(tst, TimeSeries)
|
|
|
|
assert len(tst) == 26
|
|
|
|
assert "2018-01-01" in tst
|
|
|
|
assert round(tst.iloc[12][1], 2) == 1146.1
|
|
|
|
|
2022-05-24 15:41:46 +00:00
|
|
|
def test_daily_to_yearly(self, create_test_data):
|
|
|
|
ts_data = create_test_data(AllFrequencies.D, num=782, skip_weekends=True)
|
|
|
|
ts = TimeSeries(ts_data, "D")
|
|
|
|
tst = ts.transform("Y", "mean")
|
|
|
|
assert isinstance(tst, TimeSeries)
|
|
|
|
assert len(tst) == 3
|
|
|
|
assert "2019-01-02" in tst
|
|
|
|
assert tst.iloc[2] == (datetime.datetime(2019, 1, 2), 1238.5195)
|
|
|
|
|
|
|
|
def test_weekly_to_monthly(self, create_test_data):
|
|
|
|
ts_data = create_test_data(AllFrequencies.W, num=261)
|
|
|
|
ts = TimeSeries(ts_data, "W")
|
|
|
|
tst = ts.transform("M", "mean")
|
|
|
|
assert isinstance(tst, TimeSeries)
|
|
|
|
assert "2017-01-01" in tst
|
|
|
|
assert tst.iloc[0] == (datetime.datetime(2017, 1, 1), 1007.33)
|
|
|
|
|
|
|
|
def test_weekly_to_qty(self, create_test_data):
|
|
|
|
ts_data = create_test_data(AllFrequencies.W, num=261)
|
|
|
|
ts = TimeSeries(ts_data, "W")
|
|
|
|
tst = ts.transform("Q", "mean")
|
|
|
|
assert len(tst) == 20
|
|
|
|
assert "2018-01-01" in tst
|
|
|
|
assert round(tst.iloc[4][1], 2) == 1054.72
|
|
|
|
|
|
|
|
def test_weekly_to_yearly(self, create_test_data):
|
|
|
|
ts_data = create_test_data(AllFrequencies.W, num=261)
|
|
|
|
ts = TimeSeries(ts_data, "W")
|
|
|
|
tst = ts.transform("Y", "mean")
|
|
|
|
assert "2019-01-01" in tst
|
|
|
|
assert round(tst.iloc[2][1], 2) == 1054.50
|
2022-05-25 04:32:25 +00:00
|
|
|
with pytest.raises(ValueError):
|
|
|
|
ts.transform("D", "mean")
|
|
|
|
|
|
|
|
def test_monthly_to_qty(self, create_test_data):
|
|
|
|
ts_data = create_test_data(AllFrequencies.M, num=36)
|
|
|
|
ts = TimeSeries(ts_data, "M")
|
|
|
|
tst = ts.transform("Q", "mean")
|
|
|
|
assert len(tst) == 12
|
|
|
|
assert "2018-10-01" in tst
|
|
|
|
assert tst.iloc[7] == (datetime.datetime(2018, 10, 1), 1021.19)
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
ts.transform("M", "sum")
|
2022-05-24 15:41:46 +00:00
|
|
|
|
|
|
|
|
2022-04-03 09:57:07 +00:00
|
|
|
class TestReturnsAgain:
|
|
|
|
data = [
|
|
|
|
("2020-01-01", 10),
|
|
|
|
("2020-02-01", 12),
|
|
|
|
("2020-03-01", 14),
|
|
|
|
("2020-04-01", 16),
|
|
|
|
("2020-05-01", 18),
|
|
|
|
("2020-06-01", 20),
|
|
|
|
("2020-07-01", 22),
|
|
|
|
("2020-08-01", 24),
|
|
|
|
("2020-09-01", 26),
|
|
|
|
("2020-10-01", 28),
|
|
|
|
("2020-11-01", 30),
|
|
|
|
("2020-12-01", 32),
|
|
|
|
("2021-01-01", 34),
|
|
|
|
]
|
|
|
|
|
|
|
|
def test_returns_calc(self):
|
|
|
|
ts = TimeSeries(self.data, frequency="M")
|
|
|
|
returns = ts.calculate_returns(
|
|
|
|
"2021-01-01", annual_compounded_returns=False, return_period_unit="years", return_period_value=1
|
|
|
|
)
|
|
|
|
assert returns[1] == 2.4
|
|
|
|
returns = ts.calculate_returns(
|
|
|
|
"2020-04-01", annual_compounded_returns=False, return_period_unit="months", return_period_value=3
|
|
|
|
)
|
|
|
|
assert round(returns[1], 4) == 0.6
|
|
|
|
returns = ts.calculate_returns(
|
|
|
|
"2020-04-01", annual_compounded_returns=True, return_period_unit="months", return_period_value=3
|
|
|
|
)
|
|
|
|
assert round(returns[1], 4) == 5.5536
|
|
|
|
returns = ts.calculate_returns(
|
|
|
|
"2020-04-01", annual_compounded_returns=False, return_period_unit="days", return_period_value=90
|
|
|
|
)
|
|
|
|
assert round(returns[1], 4) == 0.6
|
|
|
|
returns = ts.calculate_returns(
|
|
|
|
"2020-04-01", annual_compounded_returns=True, return_period_unit="days", return_period_value=90
|
|
|
|
)
|
|
|
|
assert round(returns[1], 4) == 5.727
|
|
|
|
returns = ts.calculate_returns(
|
|
|
|
"2020-04-10", annual_compounded_returns=True, return_period_unit="days", return_period_value=90
|
|
|
|
)
|
|
|
|
assert round(returns[1], 4) == 5.727
|
|
|
|
with pytest.raises(DateNotFoundError):
|
|
|
|
ts.calculate_returns("2020-04-10", return_period_unit="days", return_period_value=90, as_on_match="exact")
|
|
|
|
with pytest.raises(DateNotFoundError):
|
|
|
|
ts.calculate_returns("2020-04-10", return_period_unit="days", return_period_value=90, prior_match="exact")
|
|
|
|
|
|
|
|
def test_date_formats(self):
|
|
|
|
ts = TimeSeries(self.data, frequency="M")
|
2022-06-05 17:36:12 +00:00
|
|
|
PyfactsOptions.date_format = "%d-%m-%Y"
|
2022-04-03 09:57:07 +00:00
|
|
|
with pytest.raises(ValueError):
|
|
|
|
ts.calculate_returns(
|
|
|
|
"2020-04-10", annual_compounded_returns=True, return_period_unit="days", return_period_value=90
|
|
|
|
)
|
|
|
|
|
|
|
|
returns1 = ts.calculate_returns(
|
|
|
|
"2020-04-10", return_period_unit="days", return_period_value=90, date_format="%Y-%m-%d"
|
|
|
|
)
|
|
|
|
returns2 = ts.calculate_returns("10-04-2020", return_period_unit="days", return_period_value=90)
|
|
|
|
assert round(returns1[1], 4) == round(returns2[1], 4) == 5.727
|
|
|
|
|
2022-06-05 17:36:12 +00:00
|
|
|
PyfactsOptions.date_format = "%m-%d-%Y"
|
2022-04-03 09:57:07 +00:00
|
|
|
with pytest.raises(ValueError):
|
|
|
|
ts.calculate_returns(
|
|
|
|
"2020-04-10", annual_compounded_returns=True, return_period_unit="days", return_period_value=90
|
|
|
|
)
|
|
|
|
|
|
|
|
returns1 = ts.calculate_returns(
|
|
|
|
"2020-04-10", return_period_unit="days", return_period_value=90, date_format="%Y-%m-%d"
|
|
|
|
)
|
|
|
|
returns2 = ts.calculate_returns("04-10-2020", return_period_unit="days", return_period_value=90)
|
|
|
|
assert round(returns1[1], 4) == round(returns2[1], 4) == 5.727
|
|
|
|
|
|
|
|
def test_limits(self):
|
|
|
|
ts = TimeSeries(self.data, frequency="M")
|
2022-06-05 17:36:12 +00:00
|
|
|
PyfactsOptions.date_format = "%Y-%m-%d"
|
2022-04-03 09:57:07 +00:00
|
|
|
with pytest.raises(DateNotFoundError):
|
|
|
|
ts.calculate_returns("2020-04-25", return_period_unit="days", return_period_value=90, closest_max_days=10)
|
|
|
|
|
|
|
|
|
2022-03-13 08:59:13 +00:00
|
|
|
class TestVolatility:
|
2022-05-08 12:39:39 +00:00
|
|
|
def test_daily_ts(self, create_test_data):
|
2022-04-03 09:57:07 +00:00
|
|
|
ts_data = create_test_data(AllFrequencies.D)
|
|
|
|
ts = TimeSeries(ts_data, "D")
|
2022-03-13 08:59:13 +00:00
|
|
|
assert len(ts) == 1000
|
|
|
|
sd = ts.volatility(annualize_volatility=False)
|
|
|
|
assert round(sd, 6) == 0.002622
|
|
|
|
sd = ts.volatility()
|
|
|
|
assert round(sd, 6) == 0.050098
|
|
|
|
sd = ts.volatility(annual_compounded_returns=True)
|
|
|
|
assert round(sd, 4) == 37.9329
|
|
|
|
sd = ts.volatility(return_period_unit="months", annual_compounded_returns=True)
|
|
|
|
assert round(sd, 4) == 0.6778
|
|
|
|
sd = ts.volatility(return_period_unit="years")
|
|
|
|
assert round(sd, 6) == 0.023164
|
|
|
|
sd = ts.volatility(from_date="2017-10-01", to_date="2019-08-31", annualize_volatility=True)
|
|
|
|
assert round(sd, 6) == 0.050559
|
2022-03-13 17:22:41 +00:00
|
|
|
sd = ts.volatility(from_date="2017-02-01", frequency="M", return_period_unit="months")
|
|
|
|
assert round(sd, 6) == 0.050884
|
|
|
|
sd = ts.volatility(
|
|
|
|
frequency="M",
|
|
|
|
return_period_unit="months",
|
|
|
|
return_period_value=3,
|
|
|
|
annualize_volatility=False,
|
|
|
|
)
|
|
|
|
assert round(sd, 6) == 0.020547
|
2022-03-15 19:05:36 +00:00
|
|
|
|
|
|
|
|
|
|
|
class TestDrawdown:
|
2022-05-08 12:39:39 +00:00
|
|
|
def test_daily_ts(self, create_test_data):
|
2022-04-03 09:57:07 +00:00
|
|
|
ts_data = create_test_data(AllFrequencies.D, skip_weekends=True)
|
|
|
|
ts = TimeSeries(ts_data, "D")
|
2022-03-15 19:05:36 +00:00
|
|
|
mdd = ts.max_drawdown()
|
|
|
|
assert isinstance(mdd, dict)
|
|
|
|
assert len(mdd) == 3
|
|
|
|
assert all(i in mdd for i in ["start_date", "end_date", "drawdown"])
|
|
|
|
expeced_response = {
|
|
|
|
"start_date": datetime.datetime(2017, 6, 6, 0, 0),
|
|
|
|
"end_date": datetime.datetime(2017, 7, 31, 0, 0),
|
|
|
|
"drawdown": -0.028293686030751997,
|
|
|
|
}
|
|
|
|
assert mdd == expeced_response
|
|
|
|
|
2022-05-08 12:39:39 +00:00
|
|
|
def test_weekly_ts(self, create_test_data):
|
2022-04-03 09:57:07 +00:00
|
|
|
ts_data = create_test_data(AllFrequencies.W, mu=1, sigma=0.5)
|
|
|
|
ts = TimeSeries(ts_data, "W")
|
2022-03-15 19:05:36 +00:00
|
|
|
mdd = ts.max_drawdown()
|
|
|
|
assert isinstance(mdd, dict)
|
|
|
|
assert len(mdd) == 3
|
|
|
|
assert all(i in mdd for i in ["start_date", "end_date", "drawdown"])
|
|
|
|
expeced_response = {
|
|
|
|
"start_date": datetime.datetime(2019, 2, 17, 0, 0),
|
|
|
|
"end_date": datetime.datetime(2019, 11, 17, 0, 0),
|
|
|
|
"drawdown": -0.2584760499552089,
|
|
|
|
}
|
|
|
|
assert mdd == expeced_response
|
2022-04-09 06:28:35 +00:00
|
|
|
|
|
|
|
|
|
|
|
class TestSync:
|
2022-05-08 12:39:39 +00:00
|
|
|
def test_weekly_to_daily(self, create_test_data):
|
2022-04-09 06:28:35 +00:00
|
|
|
daily_data = create_test_data(AllFrequencies.D, num=15)
|
|
|
|
weekly_data = create_test_data(AllFrequencies.W, num=3)
|
|
|
|
|
|
|
|
daily_ts = TimeSeries(daily_data, frequency="D")
|
|
|
|
weekly_ts = TimeSeries(weekly_data, frequency="W")
|
|
|
|
|
|
|
|
synced_weekly_ts = daily_ts.sync(weekly_ts)
|
|
|
|
assert len(daily_ts) == len(synced_weekly_ts)
|
|
|
|
assert synced_weekly_ts.frequency == AllFrequencies.D
|
|
|
|
assert "2017-01-02" in synced_weekly_ts
|
|
|
|
assert synced_weekly_ts["2017-01-02"][1] == synced_weekly_ts["2017-01-01"][1]
|