moved create_test_data to a fixture in conftest.py
This commit is contained in:
parent
0d0b2121a3
commit
68d854cb3f
105
tests/conftest.py
Normal file
105
tests/conftest.py
Normal file
@ -0,0 +1,105 @@
|
||||
import datetime
|
||||
import math
|
||||
import random
|
||||
from typing import List
|
||||
|
||||
import fincal as fc
|
||||
import pytest
|
||||
from dateutil.relativedelta import relativedelta
|
||||
|
||||
|
||||
def conf_add(n1, n2):
|
||||
return n1 + n2
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def conf_fun():
|
||||
return conf_add
|
||||
|
||||
|
||||
def create_prices(s0: float, mu: float, sigma: float, num_prices: int) -> list:
|
||||
"""Generates a price following a geometric brownian motion process based on the input of the arguments.
|
||||
|
||||
Since this function is used only to generate data for tests, the seed is fixed as 1234.
|
||||
Many of the tests rely on exact values generated using this seed.
|
||||
If the seed is changed, those tests will fail.
|
||||
|
||||
Parameters:
|
||||
------------
|
||||
s0: float
|
||||
Asset inital price.
|
||||
|
||||
mu: float
|
||||
Interest rate expressed annual terms.
|
||||
|
||||
sigma: float
|
||||
Volatility expressed annual terms.
|
||||
|
||||
num_prices: int
|
||||
number of prices to generate
|
||||
|
||||
Returns:
|
||||
--------
|
||||
Returns a list of values generated using GBM algorithm
|
||||
"""
|
||||
|
||||
random.seed(1234) # WARNING! Changing the seed will cause most tests to fail
|
||||
all_values = []
|
||||
for _ in range(num_prices):
|
||||
s0 *= math.exp(
|
||||
(mu - 0.5 * sigma**2) * (1.0 / 365.0) + sigma * math.sqrt(1.0 / 365.0) * random.gauss(mu=0, sigma=1)
|
||||
)
|
||||
all_values.append(round(s0, 2))
|
||||
|
||||
return all_values
|
||||
|
||||
|
||||
def sample_data_generator(
|
||||
frequency: fc.Frequency,
|
||||
num: int = 1000,
|
||||
skip_weekends: bool = False,
|
||||
mu: float = 0.1,
|
||||
sigma: float = 0.05,
|
||||
eomonth: bool = False,
|
||||
) -> List[tuple]:
|
||||
"""Creates TimeSeries data
|
||||
|
||||
Parameters:
|
||||
-----------
|
||||
frequency: Frequency
|
||||
The frequency of the time series data to be generated.
|
||||
|
||||
num: int
|
||||
Number of date: value pairs to be generated.
|
||||
|
||||
skip_weekends: bool
|
||||
Whether weekends (saturday, sunday) should be skipped.
|
||||
Gets used only if the frequency is daily.
|
||||
|
||||
mu: float
|
||||
Mean return for the values.
|
||||
|
||||
sigma: float
|
||||
standard deviation of the values.
|
||||
|
||||
Returns:
|
||||
--------
|
||||
Returns a TimeSeries object
|
||||
"""
|
||||
|
||||
start_date = datetime.datetime(2017, 1, 1)
|
||||
timedelta_dict = {
|
||||
frequency.freq_type: int(
|
||||
frequency.value * num * (7 / 5 if frequency == fc.AllFrequencies.D and skip_weekends else 1)
|
||||
)
|
||||
}
|
||||
end_date = start_date + relativedelta(**timedelta_dict)
|
||||
dates = fc.create_date_series(start_date, end_date, frequency.symbol, skip_weekends=skip_weekends, eomonth=eomonth)
|
||||
values = create_prices(1000, mu, sigma, num)
|
||||
ts = list(zip(dates, values))
|
||||
return ts
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def create_test_data():
|
||||
return sample_data_generator
|
@ -1,10 +1,6 @@
|
||||
import datetime
|
||||
import math
|
||||
import random
|
||||
from typing import List
|
||||
|
||||
import pytest
|
||||
from dateutil.relativedelta import relativedelta
|
||||
from fincal import (
|
||||
AllFrequencies,
|
||||
FincalOptions,
|
||||
@ -15,89 +11,6 @@ from fincal import (
|
||||
from fincal.exceptions import DateNotFoundError
|
||||
|
||||
|
||||
def create_prices(s0: float, mu: float, sigma: float, num_prices: int) -> list:
|
||||
"""Generates a price following a geometric brownian motion process based on the input of the arguments.
|
||||
|
||||
Since this function is used only to generate data for tests, the seed is fixed as 1234.
|
||||
Many of the tests rely on exact values generated using this seed.
|
||||
If the seed is changed, those tests will fail.
|
||||
|
||||
Parameters:
|
||||
------------
|
||||
s0: float
|
||||
Asset inital price.
|
||||
|
||||
mu: float
|
||||
Interest rate expressed annual terms.
|
||||
|
||||
sigma: float
|
||||
Volatility expressed annual terms.
|
||||
|
||||
num_prices: int
|
||||
number of prices to generate
|
||||
|
||||
Returns:
|
||||
--------
|
||||
Returns a list of values generated using GBM algorithm
|
||||
"""
|
||||
|
||||
random.seed(1234) # WARNING! Changing the seed will cause most tests to fail
|
||||
all_values = []
|
||||
for _ in range(num_prices):
|
||||
s0 *= math.exp(
|
||||
(mu - 0.5 * sigma**2) * (1.0 / 365.0) + sigma * math.sqrt(1.0 / 365.0) * random.gauss(mu=0, sigma=1)
|
||||
)
|
||||
all_values.append(round(s0, 2))
|
||||
|
||||
return all_values
|
||||
|
||||
|
||||
def create_test_data(
|
||||
frequency: Frequency,
|
||||
num: int = 1000,
|
||||
skip_weekends: bool = False,
|
||||
mu: float = 0.1,
|
||||
sigma: float = 0.05,
|
||||
eomonth: bool = False,
|
||||
) -> List[tuple]:
|
||||
"""Creates TimeSeries data
|
||||
|
||||
Parameters:
|
||||
-----------
|
||||
frequency: Frequency
|
||||
The frequency of the time series data to be generated.
|
||||
|
||||
num: int
|
||||
Number of date: value pairs to be generated.
|
||||
|
||||
skip_weekends: bool
|
||||
Whether weekends (saturday, sunday) should be skipped.
|
||||
Gets used only if the frequency is daily.
|
||||
|
||||
mu: float
|
||||
Mean return for the values.
|
||||
|
||||
sigma: float
|
||||
standard deviation of the values.
|
||||
|
||||
Returns:
|
||||
--------
|
||||
Returns a TimeSeries object
|
||||
"""
|
||||
|
||||
start_date = datetime.datetime(2017, 1, 1)
|
||||
timedelta_dict = {
|
||||
frequency.freq_type: int(
|
||||
frequency.value * num * (7 / 5 if frequency == AllFrequencies.D and skip_weekends else 1)
|
||||
)
|
||||
}
|
||||
end_date = start_date + relativedelta(**timedelta_dict)
|
||||
dates = create_date_series(start_date, end_date, frequency.symbol, skip_weekends=skip_weekends, eomonth=eomonth)
|
||||
values = create_prices(1000, mu, sigma, num)
|
||||
ts = list(zip(dates, values))
|
||||
return ts
|
||||
|
||||
|
||||
class TestDateSeries:
|
||||
def test_daily(self):
|
||||
start_date = datetime.datetime(2020, 1, 1)
|
||||
@ -161,14 +74,14 @@ class TestDateSeries:
|
||||
|
||||
|
||||
class TestTimeSeriesCreation:
|
||||
def test_creation_with_list_of_tuples(self):
|
||||
def test_creation_with_list_of_tuples(self, create_test_data):
|
||||
ts_data = create_test_data(frequency=AllFrequencies.D, num=50)
|
||||
ts = TimeSeries(ts_data, frequency="D")
|
||||
assert len(ts) == 50
|
||||
assert isinstance(ts.frequency, Frequency)
|
||||
assert ts.frequency.days == 1
|
||||
|
||||
def test_creation_with_string_dates(self):
|
||||
def test_creation_with_string_dates(self, create_test_data):
|
||||
ts_data = create_test_data(frequency=AllFrequencies.D, num=50)
|
||||
ts_data1 = [(dt.strftime("%Y-%m-%d"), val) for dt, val in ts_data]
|
||||
ts = TimeSeries(ts_data1, frequency="D")
|
||||
@ -186,19 +99,19 @@ class TestTimeSeriesCreation:
|
||||
ts = TimeSeries(ts_data1, frequency="D", date_format="%m-%d-%Y %H:%M")
|
||||
datetime.datetime(2017, 1, 1, 0, 0) in ts
|
||||
|
||||
def test_creation_with_list_of_dicts(self):
|
||||
def test_creation_with_list_of_dicts(self, create_test_data):
|
||||
ts_data = create_test_data(frequency=AllFrequencies.D, num=50)
|
||||
ts_data1 = [{"date": dt.strftime("%Y-%m-%d"), "value": val} for dt, val in ts_data]
|
||||
ts = TimeSeries(ts_data1, frequency="D")
|
||||
datetime.datetime(2017, 1, 1) in ts
|
||||
|
||||
def test_creation_with_list_of_lists(self):
|
||||
def test_creation_with_list_of_lists(self, create_test_data):
|
||||
ts_data = create_test_data(frequency=AllFrequencies.D, num=50)
|
||||
ts_data1 = [[dt.strftime("%Y-%m-%d"), val] for dt, val in ts_data]
|
||||
ts = TimeSeries(ts_data1, frequency="D")
|
||||
datetime.datetime(2017, 1, 1) in ts
|
||||
|
||||
def test_creation_with_dict(self):
|
||||
def test_creation_with_dict(self, create_test_data):
|
||||
ts_data = create_test_data(frequency=AllFrequencies.D, num=50)
|
||||
ts_data1 = [{dt.strftime("%Y-%m-%d"): val} for dt, val in ts_data]
|
||||
ts = TimeSeries(ts_data1, frequency="D")
|
||||
@ -206,9 +119,8 @@ class TestTimeSeriesCreation:
|
||||
|
||||
|
||||
class TestTimeSeriesBasics:
|
||||
FincalOptions.get_closest = "exact"
|
||||
|
||||
def test_fill(self):
|
||||
def test_fill(self, create_test_data):
|
||||
FincalOptions.get_closest = "exact"
|
||||
ts_data = create_test_data(frequency=AllFrequencies.D, num=50, skip_weekends=True)
|
||||
ts = TimeSeries(ts_data, frequency="D")
|
||||
ffill_data = ts.ffill()
|
||||
@ -235,7 +147,7 @@ class TestTimeSeriesBasics:
|
||||
bf = ts.bfill()
|
||||
assert bf["2021-01-03"][1] == 240
|
||||
|
||||
def test_fill_weekly(self):
|
||||
def test_fill_weekly(self, create_test_data):
|
||||
ts_data = create_test_data(frequency=AllFrequencies.W, num=10)
|
||||
ts_data.pop(2)
|
||||
ts_data.pop(6)
|
||||
@ -254,7 +166,7 @@ class TestTimeSeriesBasics:
|
||||
|
||||
|
||||
class TestReturns:
|
||||
def test_returns_calc(self):
|
||||
def test_returns_calc(self, create_test_data):
|
||||
ts_data = create_test_data(AllFrequencies.D, skip_weekends=True)
|
||||
ts = TimeSeries(ts_data, "D")
|
||||
returns = ts.calculate_returns(
|
||||
@ -287,7 +199,7 @@ class TestReturns:
|
||||
with pytest.raises(DateNotFoundError):
|
||||
ts.calculate_returns("2020-04-04", return_period_unit="months", return_period_value=3, prior_match="exact")
|
||||
|
||||
def test_date_formats(self):
|
||||
def test_date_formats(self, create_test_data):
|
||||
ts_data = create_test_data(AllFrequencies.D, skip_weekends=True)
|
||||
ts = TimeSeries(ts_data, "D")
|
||||
FincalOptions.date_format = "%d-%m-%Y"
|
||||
@ -314,7 +226,7 @@ class TestReturns:
|
||||
returns2 = ts.calculate_returns("04-01-2020", return_period_unit="days", return_period_value=90)
|
||||
assert round(returns1[1], 6) == round(returns2[1], 6) == 0.073632
|
||||
|
||||
def test_limits(self):
|
||||
def test_limits(self, create_test_data):
|
||||
FincalOptions.date_format = "%Y-%m-%d"
|
||||
ts_data = create_test_data(AllFrequencies.D)
|
||||
ts = TimeSeries(ts_data, "D")
|
||||
@ -327,7 +239,7 @@ class TestReturns:
|
||||
|
||||
|
||||
class TestExpand:
|
||||
def test_weekly_to_daily(self):
|
||||
def test_weekly_to_daily(self, create_test_data):
|
||||
ts_data = create_test_data(AllFrequencies.W, 10)
|
||||
ts = TimeSeries(ts_data, "W")
|
||||
expanded_ts = ts.expand("D", "ffill")
|
||||
@ -335,7 +247,7 @@ class TestExpand:
|
||||
assert expanded_ts.frequency.name == "daily"
|
||||
assert expanded_ts.iloc[0][1] == expanded_ts.iloc[1][1]
|
||||
|
||||
def test_weekly_to_daily_no_weekends(self):
|
||||
def test_weekly_to_daily_no_weekends(self, create_test_data):
|
||||
ts_data = create_test_data(AllFrequencies.W, 10)
|
||||
ts = TimeSeries(ts_data, "W")
|
||||
expanded_ts = ts.expand("D", "ffill", skip_weekends=True)
|
||||
@ -343,7 +255,7 @@ class TestExpand:
|
||||
assert expanded_ts.frequency.name == "daily"
|
||||
assert expanded_ts.iloc[0][1] == expanded_ts.iloc[1][1]
|
||||
|
||||
def test_monthly_to_daily(self):
|
||||
def test_monthly_to_daily(self, create_test_data):
|
||||
ts_data = create_test_data(AllFrequencies.M, 6)
|
||||
ts = TimeSeries(ts_data, "M")
|
||||
expanded_ts = ts.expand("D", "ffill")
|
||||
@ -351,7 +263,7 @@ class TestExpand:
|
||||
assert expanded_ts.frequency.name == "daily"
|
||||
assert expanded_ts.iloc[0][1] == expanded_ts.iloc[1][1]
|
||||
|
||||
def test_monthly_to_daily_no_weekends(self):
|
||||
def test_monthly_to_daily_no_weekends(self, create_test_data):
|
||||
ts_data = create_test_data(AllFrequencies.M, 6)
|
||||
ts = TimeSeries(ts_data, "M")
|
||||
expanded_ts = ts.expand("D", "ffill", skip_weekends=True)
|
||||
@ -359,7 +271,7 @@ class TestExpand:
|
||||
assert expanded_ts.frequency.name == "daily"
|
||||
assert expanded_ts.iloc[0][1] == expanded_ts.iloc[1][1]
|
||||
|
||||
def test_monthly_to_weekly(self):
|
||||
def test_monthly_to_weekly(self, create_test_data):
|
||||
ts_data = create_test_data(AllFrequencies.M, 6)
|
||||
ts = TimeSeries(ts_data, "M")
|
||||
expanded_ts = ts.expand("W", "ffill")
|
||||
@ -367,7 +279,7 @@ class TestExpand:
|
||||
assert expanded_ts.frequency.name == "weekly"
|
||||
assert expanded_ts.iloc[0][1] == expanded_ts.iloc[1][1]
|
||||
|
||||
def test_yearly_to_monthly(self):
|
||||
def test_yearly_to_monthly(self, create_test_data):
|
||||
ts_data = create_test_data(AllFrequencies.Y, 5)
|
||||
ts = TimeSeries(ts_data, "Y")
|
||||
expanded_ts = ts.expand("M", "ffill")
|
||||
@ -458,7 +370,7 @@ class TestReturnsAgain:
|
||||
|
||||
|
||||
class TestVolatility:
|
||||
def test_daily_ts(self):
|
||||
def test_daily_ts(self, create_test_data):
|
||||
ts_data = create_test_data(AllFrequencies.D)
|
||||
ts = TimeSeries(ts_data, "D")
|
||||
assert len(ts) == 1000
|
||||
@ -486,7 +398,7 @@ class TestVolatility:
|
||||
|
||||
|
||||
class TestDrawdown:
|
||||
def test_daily_ts(self):
|
||||
def test_daily_ts(self, create_test_data):
|
||||
ts_data = create_test_data(AllFrequencies.D, skip_weekends=True)
|
||||
ts = TimeSeries(ts_data, "D")
|
||||
mdd = ts.max_drawdown()
|
||||
@ -500,7 +412,7 @@ class TestDrawdown:
|
||||
}
|
||||
assert mdd == expeced_response
|
||||
|
||||
def test_weekly_ts(self):
|
||||
def test_weekly_ts(self, create_test_data):
|
||||
ts_data = create_test_data(AllFrequencies.W, mu=1, sigma=0.5)
|
||||
ts = TimeSeries(ts_data, "W")
|
||||
mdd = ts.max_drawdown()
|
||||
@ -516,7 +428,7 @@ class TestDrawdown:
|
||||
|
||||
|
||||
class TestSync:
|
||||
def test_weekly_to_daily(self):
|
||||
def test_weekly_to_daily(self, create_test_data):
|
||||
daily_data = create_test_data(AllFrequencies.D, num=15)
|
||||
weekly_data = create_test_data(AllFrequencies.W, num=3)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user