Compare commits
2 Commits
1f2b75282b
...
335a6fc2e9
Author | SHA1 | Date | |
---|---|---|---|
335a6fc2e9 | |||
b6b2381163 |
@ -1,6 +1,6 @@
|
||||
import datetime
|
||||
from dataclasses import dataclass
|
||||
from typing import List
|
||||
from typing import Dict, Iterable, List, Literal, Tuple, Union
|
||||
|
||||
from dateutil.relativedelta import relativedelta
|
||||
|
||||
@ -11,15 +11,12 @@ class Options:
|
||||
closest: str = 'before' # after
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class Frequency:
|
||||
def __init__(self, name, interval_type, interval_value, interval_days_value):
|
||||
self.name = name
|
||||
self.type = interval_type
|
||||
self.value = interval_value
|
||||
self.days = interval_days_value
|
||||
|
||||
def __repr__(self):
|
||||
return f"Frequency({self.name}, {self.type}, {self.value}, {self.days})"
|
||||
name: str
|
||||
freq_type: str
|
||||
value: int
|
||||
days: int
|
||||
|
||||
|
||||
class AllFrequencies:
|
||||
@ -43,16 +40,65 @@ def create_date_series(
|
||||
dates = []
|
||||
|
||||
for i in range(0, int(datediff)):
|
||||
diff = {frequency.type: frequency.value*i}
|
||||
diff = {frequency.freq_type: frequency.value*i}
|
||||
dates.append(start_date + relativedelta(**diff))
|
||||
|
||||
return dates
|
||||
|
||||
|
||||
def _preprocess_timeseries(
|
||||
data: Union[
|
||||
List[Iterable[Union[str, datetime.datetime, float]]],
|
||||
List[Dict[str, Union[float, datetime.datetime]]],
|
||||
List[Dict[Union[str, datetime.datetime], float]],
|
||||
Dict[Union[str, datetime.datetime], float]
|
||||
],
|
||||
date_format: str
|
||||
) -> List[Tuple[datetime.datetime, float]]:
|
||||
"""Converts any type of list to the correct type"""
|
||||
|
||||
if isinstance(data, list):
|
||||
if isinstance(data[0], dict):
|
||||
if len(data[0].keys()) == 2:
|
||||
current_data = [tuple(i.values()) for i in data]
|
||||
elif len(data[0].keys()) == 1:
|
||||
current_data = [tuple(*i.items()) for i in data]
|
||||
else:
|
||||
raise TypeError("Could not parse the data")
|
||||
current_data = _preprocess_timeseries(current_data, date_format)
|
||||
|
||||
elif isinstance(data[0], Iterable):
|
||||
if isinstance(data[0][0], str):
|
||||
current_data = []
|
||||
for i in data:
|
||||
row = datetime.datetime.strptime(i[0], date_format), i[1]
|
||||
current_data.append(row)
|
||||
elif isinstance(data[0][0], datetime.datetime):
|
||||
current_data = [(i, j) for i, j in data]
|
||||
else:
|
||||
raise TypeError("Could not parse the data")
|
||||
else:
|
||||
raise TypeError("Could not parse the data")
|
||||
|
||||
elif isinstance(data, dict):
|
||||
current_data = [(k, v) for k, v in data.items()]
|
||||
current_data = _preprocess_timeseries(current_data, date_format)
|
||||
|
||||
else:
|
||||
raise TypeError("Could not parse the data")
|
||||
current_data.sort()
|
||||
return current_data
|
||||
|
||||
|
||||
class TimeSeries:
|
||||
"""Container for TimeSeries objects"""
|
||||
|
||||
def __init__(self, data: List[tuple], date_format: str = "%Y-%m-%d", frequency="D"):
|
||||
def __init__(
|
||||
self,
|
||||
data: List[Iterable],
|
||||
date_format: str = "%Y-%m-%d",
|
||||
frequency=Literal['D', 'W', 'M', 'Q', 'H', 'Y']
|
||||
):
|
||||
"""Instantiate a TimeSeries object
|
||||
|
||||
Parameters
|
||||
@ -72,11 +118,11 @@ class TimeSeries:
|
||||
Valid values are {D, W, M, Q, H, Y}
|
||||
"""
|
||||
|
||||
time_series = [(datetime.datetime.strptime(i[0], date_format), i[1]) for i in data]
|
||||
time_series.sort()
|
||||
self.time_series = dict(time_series)
|
||||
data = _preprocess_timeseries(data, date_format=date_format)
|
||||
|
||||
self.time_series = dict(data)
|
||||
self.dates = set(list(self.time_series))
|
||||
if len(self.dates) != len(time_series):
|
||||
if len(self.dates) != len(data):
|
||||
print("Warning: The input data contains duplicate dates which have been ignored.")
|
||||
self.start_date = list(self.time_series)[0]
|
||||
self.end_date = list(self.time_series)[-1]
|
||||
@ -126,7 +172,7 @@ class TimeSeries:
|
||||
cur_val = self.time_series[cur_date]
|
||||
except KeyError:
|
||||
pass
|
||||
new_ts.update({cur_date: cur_val}) # type: ignore
|
||||
new_ts.update({cur_date: cur_val})
|
||||
|
||||
if inplace:
|
||||
self.time_series = new_ts
|
||||
@ -144,7 +190,7 @@ class TimeSeries:
|
||||
cur_val = self.time_series[cur_date]
|
||||
except KeyError:
|
||||
pass
|
||||
new_ts.update({cur_date: cur_val}) # type: ignore
|
||||
new_ts.update({cur_date: cur_val})
|
||||
|
||||
if inplace:
|
||||
self.time_series = new_ts
|
||||
@ -154,7 +200,7 @@ class TimeSeries:
|
||||
|
||||
def calculate_returns(
|
||||
self, as_on: datetime.datetime, closest: str = "previous", compounding: bool = True, years: int = 1
|
||||
) -> int:
|
||||
) -> float:
|
||||
"""Method to calculate returns for a certain time-period as on a particular date
|
||||
>>> calculate_returns(datetime.date(2020, 1, 1), years=1)
|
||||
"""
|
||||
@ -170,7 +216,7 @@ class TimeSeries:
|
||||
elif closest == "next":
|
||||
delta = 1
|
||||
else:
|
||||
raise ValueError(f"Invalid value for closes parameter: {closest}")
|
||||
raise ValueError(f"Invalid value for closest parameter: {closest}")
|
||||
|
||||
while True:
|
||||
try:
|
||||
|
Loading…
Reference in New Issue
Block a user