PyFacts/fincal/core.py
2022-04-10 13:27:25 +05:30

447 lines
15 KiB
Python

from __future__ import annotations
import datetime
import inspect
from collections import UserDict, UserList
from dataclasses import dataclass
from numbers import Number
from typing import Callable, Iterable, List, Literal, Mapping, Sequence, Type
from .utils import FincalOptions, _parse_date, _preprocess_timeseries
@dataclass(frozen=True)
class Frequency:
name: str
freq_type: str
value: int
days: int
symbol: str
def date_parser(*pos):
"""Decorator to parse dates in any function
Accepts the 0-indexed position of the parameter for which date parsing needs to be done.
Works even if function is used with keyword arguments while not maintaining parameter order.
Example:
--------
>>> @date_parser(2, 3)
>>> def calculate_difference(diff_units='days', return_type='int', date1, date2):
... diff = date2 - date1
... if return_type == 'int':
... return diff.days
... return diff
...
>>> calculate_difference(date1='2019-01-01', date2='2020-01-01')
datetime.timedelta(365)
Each of the dates is automatically parsed into a datetime.datetime object from string.
"""
def parse_dates(func):
def wrapper_func(*args, **kwargs):
date_format: str = kwargs.get("date_format", None)
args: list = list(args)
sig: inspect.Signature = inspect.signature(func)
params: list = [i[0] for i in sig.parameters.items()]
for j in pos:
kwarg: str = params[j]
date = kwargs.get(kwarg, None)
in_args: bool = False
if date is None:
try:
date = args[j]
except IndexError:
pass
in_args = True
if date is None:
continue
parsed_date: datetime.datetime = _parse_date(date, date_format)
if not in_args:
kwargs[kwarg] = parsed_date
else:
args[j] = parsed_date
return func(*args, **kwargs)
return wrapper_func
return parse_dates
class AllFrequencies:
D = Frequency("daily", "days", 1, 1, "D")
W = Frequency("weekly", "days", 7, 7, "W")
M = Frequency("monthly", "months", 1, 30, "M")
Q = Frequency("quarterly", "months", 3, 91, "Q")
H = Frequency("half-yearly", "months", 6, 182, "H")
Y = Frequency("annual", "years", 1, 365, "Y")
class _IndexSlicer:
"""Class to create a slice using iloc in TimeSeriesCore"""
def __init__(self, parent_obj: object):
self.parent = parent_obj
def __getitem__(self, n):
if isinstance(n, int):
keys: list = [self.parent.dates[n]]
else:
keys: list = self.parent.dates[n]
item = [(key, self.parent.data[key]) for key in keys]
if len(item) == 1:
return item[0]
return self.parent.__class__(item, self.parent.frequency.symbol)
class Series(UserList):
"""Container for a series of objects, all objects must be of the same type"""
def __init__(
self,
data: Sequence,
data_type: Literal["date", "number", "bool"],
date_format: str = None,
):
types_dict: dict = {
"date": datetime.datetime,
"datetime": datetime.datetime,
"datetime.datetime": datetime.datetime,
"float": float,
"int": float,
"number": float,
"bool": bool,
}
if data_type not in types_dict.keys():
raise ValueError("Unsupported value for data type")
if not isinstance(data, Sequence):
raise TypeError("Series object can only be created using Sequence types")
if data_type in ["date", "datetime", "datetime.datetime"]:
data = [_parse_date(i, date_format) for i in data]
else:
func: Callable = types_dict[data_type]
data: list = [func(i) for i in data]
self.dtype: Type = types_dict[data_type]
self.data: Sequence = data
def __repr__(self):
return f"{self.__class__.__name__}({self.data}, data_type='{self.dtype.__name__}')"
def __getitem__(self, i):
if isinstance(i, slice):
return self.__class__(self.data[i], str(self.dtype.__name__))
else:
return self.data[i]
def __gt__(self, other):
if self.dtype == bool:
raise TypeError("> not supported for boolean series")
if isinstance(other, (str, datetime.datetime, datetime.date)):
other = _parse_date(other)
if self.dtype == float and isinstance(other, Number) or isinstance(other, self.dtype):
gt = Series([i > other for i in self.data], "bool")
else:
raise Exception(f"Cannot compare type {self.dtype.__name__} to {type(other).__name__}")
return gt
def __ge__(self, other):
if self.dtype == bool:
raise TypeError(">= not supported for boolean series")
if isinstance(other, (str, datetime.datetime, datetime.date)):
other = _parse_date(other)
if self.dtype == float and isinstance(other, Number) or isinstance(other, self.dtype):
ge = Series([i >= other for i in self.data], "bool")
else:
raise Exception(f"Cannot compare type {self.dtype.__name__} to {type(other).__name__}")
return ge
def __lt__(self, other):
if self.dtype == bool:
raise TypeError("< not supported for boolean series")
if isinstance(other, (str, datetime.datetime, datetime.date)):
other = _parse_date(other)
if self.dtype == float and isinstance(other, Number) or isinstance(other, self.dtype):
lt = Series([i < other for i in self.data], "bool")
else:
raise Exception(f"Cannot compare type {self.dtype.__name__} to {type(other).__name__}")
return lt
def __le__(self, other):
if self.dtype == bool:
raise TypeError("<= not supported for boolean series")
if isinstance(other, (str, datetime.datetime, datetime.date)):
other = _parse_date(other)
if self.dtype == float and isinstance(other, Number) or isinstance(other, self.dtype):
le = Series([i <= other for i in self.data], "bool")
else:
raise Exception(f"Cannot compare type {self.dtype.__name__} to {type(other).__name__}")
return le
def __eq__(self, other):
if isinstance(other, (str, datetime.datetime, datetime.date)):
other = _parse_date(other)
if self.dtype == float and isinstance(other, Number) or isinstance(other, self.dtype):
eq = Series([i == other for i in self.data], "bool")
else:
raise Exception(f"Cannot compare type {self.dtype.__name__} to {type(other).__name__}")
return eq
class TimeSeriesCore(UserDict):
"""Defines the core building blocks of a TimeSeries object"""
def __init__(
self,
ts_data: List[Iterable] | Mapping,
frequency: Literal["D", "W", "M", "Q", "H", "Y"],
date_format: str = "%Y-%m-%d",
):
"""Instantiate a TimeSeriesCore object
Parameters
----------
ts_data : List[Iterable] | Mapping
Time Series data in the form of list of tuples or dictionary.
The first element of each tuple should be a date and second element should be a value.
In case of dictionary, the key should be the date.
frequency : str
The frequency of the time series.
Valid values are {D, W, M, Q, H, Y}
date_format : str, optional, default "%Y-%m-%d"
Specify the format of the date
Required only if the first argument of tuples is a string. Otherwise ignored.
"""
ts_data = _preprocess_timeseries(ts_data, date_format=date_format)
super().__init__(dict(ts_data))
if len(self.data) != len(ts_data):
print("Warning: The input data contains duplicate dates which have been ignored.")
self.frequency: Frequency = getattr(AllFrequencies, frequency)
self.iter_num: int = -1
self._dates: list = None
self._values: list = None
self._start_date: datetime.datetime = None
self._end_date: datetime.datetime = None
@property
def dates(self) -> Series:
"""Get a list of all the dates in the TimeSeries object"""
if self._dates is None or len(self._dates) != len(self.data):
self._dates = list(self.data.keys())
return Series(self._dates, "date")
@property
def values(self) -> Series:
"""Get a list of all the Values in the TimeSeries object"""
if self._values is None or len(self._values) != len(self.data):
self._values = list(self.data.values())
return Series(self._values, "number")
@property
def start_date(self) -> datetime.datetime:
"""The first date in the TimeSeries object"""
return self.dates[0]
@property
def end_date(self) -> datetime.datetime:
"""The last date in the TimeSeries object"""
return self.dates[-1]
def _get_printable_slice(self, n: int):
"""Helper function for __repr__ and __str__
Returns a slice of the dataframe from beginning and end.
"""
printable = {}
iter_f = iter(self.data)
first_n = [next(iter_f) for i in range(n // 2)]
iter_b = reversed(self.data)
last_n = [next(iter_b) for i in range(n // 2)]
last_n.sort()
printable["start"] = [str((i, self.data[i])) for i in first_n]
printable["end"] = [str((i, self.data[i])) for i in last_n]
return printable
def __repr__(self):
if len(self.data) > 6:
printable = self._get_printable_slice(6)
printable_str = "{}([{}\n\t ...\n\t {}], frequency={})".format(
self.__class__.__name__,
",\n\t ".join(printable["start"]),
",\n\t ".join(printable["end"]),
repr(self.frequency.symbol),
)
else:
printable_str = "{}([{}], frequency={})".format(
self.__class__.__name__,
",\n\t".join([str(i) for i in self.data.items()]),
repr(self.frequency.symbol),
)
return printable_str
def __str__(self):
if len(self.data) > 6:
printable = self._get_printable_slice(6)
printable_str = "[{}\n ...\n {}]".format(
",\n ".join(printable["start"]),
",\n ".join(printable["end"]),
)
else:
printable_str = "[{}]".format(",\n ".join([str(i) for i in self.data.items()]))
return printable_str
@date_parser(1)
def _get_item_from_date(self, date: str | datetime.datetime):
return date, self.data[date]
def _get_item_from_key(self, key: str | datetime.datetime):
if isinstance(key, int):
raise KeyError(f"{key}. \nHint: use .iloc[{key}] for index based slicing.")
if key in ["dates", "values"]:
return getattr(self, key)
return self._get_item_from_date(key)
def _get_item_from_list(self, date_list: Sequence[str | datetime.datetime]):
data_to_return = [self._get_item_from_key(key) for key in date_list]
return self.__class__(data_to_return, frequency=self.frequency.symbol)
def _get_item_from_series(self, series: Series):
if series.dtype == bool:
if len(series) != len(self.dates):
raise ValueError(f"Length of Series: {len(series)} did not match length of object: {len(self.dates)}")
dates_to_return = [self.dates[i] for i, j in enumerate(series) if j]
elif series.dtype == datetime.datetime:
dates_to_return = list(series)
else:
raise TypeError(f"Cannot slice {self.__class__.__name__} using a Series of {series.dtype.__name__}")
return self._get_item_from_list(dates_to_return)
def __getitem__(self, key):
if isinstance(key, (int, str, datetime.datetime, datetime.date)):
return self._get_item_from_key(key)
if isinstance(key, Series):
return self._get_item_from_series(key)
if isinstance(key, Sequence):
return self._get_item_from_list(key)
raise TypeError(f"Invalid type {repr(type(key).__name__)} for slicing.")
def __setitem__(self, key: str | datetime.datetime, item: Number) -> None:
key = _parse_date(key)
super().__setitem__(key, item)
self.data = dict(sorted(self.data.items()))
def __iter__(self):
self.n = 0
return self
def __next__(self):
if self.n >= len(self.dates):
raise StopIteration
else:
key = self.dates[self.n]
self.n += 1
return key, self.data[key]
@date_parser(1)
def __contains__(self, key: object) -> bool:
return super().__contains__(key)
@date_parser(1)
def get(self, date: str | datetime.datetime, default=None, closest=None):
if closest is None:
closest = FincalOptions.get_closest
if closest == "exact":
try:
item = self._get_item_from_date(date)
return item
except KeyError:
return default
if closest == "previous":
delta = datetime.timedelta(-1)
elif closest == "next":
delta = datetime.timedelta(1)
else:
raise ValueError(f"Invalid argument from closest {closest!r}")
while True:
try:
item = self._get_item_from_date(date)
return item
except KeyError:
date += delta
@property
def iloc(self) -> Mapping:
"""Returns an item or a set of items based on index
supports slicing using numerical index.
Accepts integers or Python slice objects
Usage
-----
>>> ts = TimeSeries(data, frequency='D')
>>> ts.iloc[0] # get the first value
>>> ts.iloc[-1] # get the last value
>>> ts.iloc[:3] # get the first 3 values
>>> ts.illoc[-3:] # get the last 3 values
>>> ts.iloc[5:10] # get five values starting from the fifth value
>>> ts.iloc[::2] # get every alternate date
"""
return _IndexSlicer(self)
def head(self, n: int = 6) -> TimeSeriesCore:
"""Returns the first n items of the TimeSeries object"""
return self.iloc[:n]
def tail(self, n: int = 6) -> TimeSeriesCore:
"""Returns the last n items of the TimeSeries object"""
return self.iloc[-n:]
def items(self):
return self.data.items()