import datetime from dataclasses import dataclass from typing import List, Literal, Mapping, Sequence, Tuple from .exceptions import DateNotFoundError, DateOutOfRangeError @dataclass class FincalOptions: date_format: str = "%Y-%m-%d" closest: str = "before" # after traded_days: int = 365 get_closest: str = "exact" def _parse_date(date: str, date_format: str = None) -> datetime.datetime: """Parses date and handles errors Parameters: ----------- date: str | datetime.date The date to be parsed. If the date passed is already a datetime object, it will return it unprocessed. date_format: str, default None The format of the date string in datetime.strftime friendly format. If format is None, format in FincalOptions.date_format will be used. Returns: -------- Returns a datetime.datetime object. Raises: ------- TypeError: If the is not a date-like string ValueError: If the date could not be parsed with the given format """ if isinstance(date, (datetime.datetime, datetime.date)): return datetime.datetime.fromordinal(date.toordinal()) if date_format is None: date_format = FincalOptions.date_format try: date = datetime.datetime.strptime(date, date_format) except TypeError: raise ValueError("Date does not seem to be valid date-like string") except ValueError: raise ValueError("Date could not be parsed. Have you set the correct date format in FincalOptions.date_format?") return date def _preprocess_timeseries( data: Sequence[Tuple[str | datetime.datetime, float]] | Sequence[Mapping[str | datetime.datetime, float]] | Mapping[str | datetime.datetime, float], date_format: str, ) -> List[Tuple[datetime.datetime, float]]: """Converts any type of list to the TimeSeries friendly format. This function is internally called by the __init__ function of the TimeSeriesCore class The TimeSeries class can internally process a list of Tuples. However, users have the option of passing a variety of types. This function preprocesses the data and converts it into the relevant format. If the data is a dictionary, it will be converted using .items() iteration. If the data is not a dictionary or a list, it will raise an error. If the data is of list type: * If the first item is also of list type, it will be parsed as a list of lists * If the first item is a dictionary with one key, then key will be parsed as date * If the first item is a dictionary with two keys, then first key will be date and second will be value * If the first element is of another type, it will raise an error The final return value is sorted by date Parameters: ----------- Data: The data for the time series. Can be a dictionary, a list of tuples, or a list of dictionaries. date_format: str The format of the date in strftime friendly format. Returns: ----------- Returns a list of Tuples where the first element of each tuple is of datetime.datetime class and the second element is of float class Raises: -------- TypeError: If the data is not in a format which can be parsed. """ if isinstance(data, Mapping): current_data: List[tuple] = [(k, v) for k, v in data.items()] return _preprocess_timeseries(current_data, date_format) # If data is not a dictionary or list, it cannot be parsed if not isinstance(data, Sequence): raise TypeError("Could not parse the data") if isinstance(data[0], Sequence): return sorted([(_parse_date(i, date_format), j) for i, j in data]) # If first element is not a dictionary or tuple, it cannot be parsed if not isinstance(data[0], Mapping): raise TypeError("Could not parse the data") if len(data[0]) == 1: current_data: List[tuple] = [tuple(*i.items()) for i in data] elif len(data[0]) == 2: current_data: List[tuple] = [tuple(i.values()) for i in data] else: raise TypeError("Could not parse the data") return _preprocess_timeseries(current_data, date_format) def _preprocess_match_options(as_on_match: str, prior_match: str, closest: str) -> Tuple[datetime.timedelta]: """Checks the arguments and returns appropriate timedelta objects""" deltas = {"exact": 0, "previous": -1, "next": 1} if closest not in deltas.keys(): raise ValueError(f"Invalid argument for closest: {closest}") as_on_match: str = closest if as_on_match == "closest" else as_on_match prior_match: str = closest if prior_match == "closest" else prior_match if as_on_match in deltas.keys(): as_on_delta: datetime.timedelta = datetime.timedelta(days=deltas[as_on_match]) else: raise ValueError(f"Invalid as_on_match argument: {as_on_match}") if prior_match in deltas.keys(): prior_delta: datetime.timedelta = datetime.timedelta(days=deltas[prior_match]) else: raise ValueError(f"Invalid prior_match argument: {prior_match}") return as_on_delta, prior_delta def _find_closest_date( data: Mapping[datetime.datetime, float], date: datetime.datetime, limit_days: int, delta: datetime.timedelta, if_not_found: Literal["fail", "nan"], ): """Helper function to find data for the closest available date""" if delta.days < 0 and date < min(data): raise DateOutOfRangeError(date, "min") if delta.days > 0 and date > max(data): raise DateOutOfRangeError(date, "max") row: tuple = data.get(date, None) if row is not None: return date, row if delta and limit_days != 0: return _find_closest_date(data, date + delta, limit_days - 1, delta, if_not_found) if if_not_found == "fail": raise DateNotFoundError("Data not found for date", date) if if_not_found == "nan": return date, float("NaN") raise ValueError(f"Invalid argument for if_not_found: {if_not_found}") def _interval_to_years(interval_type: Literal["years", "months", "day"], interval_value: int) -> float: """Converts any time period to years for use with compounding functions""" year_conversion_factor: dict = {"years": 1, "months": 12, "days": 365} years: float = interval_value / year_conversion_factor[interval_type] return years