import datetime import statistics from typing import Literal from fincal.core import date_parser from .fincal import TimeSeries from .utils import _interval_to_years @date_parser(3, 4) def sharpe_ratio( time_series_data: TimeSeries, risk_free_data: TimeSeries = None, risk_free_rate: float = None, from_date: str | datetime.datetime = None, to_date: str | datetime.datetime = None, frequency: Literal["D", "W", "M", "Q", "H", "Y"] = None, return_period_unit: Literal["years", "months", "days"] = "years", return_period_value: int = 1, as_on_match: str = "closest", prior_match: str = "closest", closest: Literal["previous", "next"] = "previous", date_format: str = None, ): """Calculate the Sharpe ratio of any time series Parameters ---------- time_series_data : risk_free_data : risk_free_rate : from_date : to_date : frequency : return_period_unit : return_period_value : as_on_match : prior_match : closest : date_format : Returns ------- _description_ Raises ------ ValueError _description_ """ interval_days = int(_interval_to_years(return_period_unit, return_period_value) * 365 + 1) if from_date is None: from_date = time_series_data.start_date + datetime.timedelta(days=interval_days) if to_date is None: to_date = time_series_data.end_date if risk_free_data is None and risk_free_rate is None: raise ValueError("At least one of risk_free_data or risk_free rate is required") elif risk_free_data is not None: risk_free_rate = risk_free_data.mean() common_params = { "from_date": from_date, "to_date": to_date, "frequency": frequency, "return_period_unit": return_period_unit, "return_period_value": return_period_value, "as_on_match": as_on_match, "prior_match": prior_match, "closest": closest, "date_format": date_format, } average_rr = time_series_data.average_rolling_return(**common_params, annual_compounded_returns=True) excess_returns = average_rr - risk_free_rate sd = time_series_data.volatility( **common_params, annualize_volatility=True, ) sharpe_ratio_value = excess_returns / sd return sharpe_ratio_value @date_parser(2, 3) def beta( asset_data: TimeSeries, market_data: TimeSeries, from_date: str | datetime.datetime = None, to_date: str | datetime.datetime = None, frequency: Literal["D", "W", "M", "Q", "H", "Y"] = None, return_period_unit: Literal["years", "months", "days"] = "years", return_period_value: int = 1, as_on_match: str = "closest", prior_match: str = "closest", closest: Literal["previous", "next"] = "previous", date_format: str = None, ): interval_years = _interval_to_years(return_period_unit, return_period_value) interval_days = int(interval_years * 365 + 1) annual_compounded_returns = True if interval_years > 1 else False if from_date is None: from_date = asset_data.start_date + datetime.timedelta(days=interval_days) if to_date is None: to_date = asset_data.end_date common_params = { "from_date": from_date, "to_date": to_date, "frequency": frequency, "return_period_unit": return_period_unit, "return_period_value": return_period_value, "as_on_match": as_on_match, "prior_match": prior_match, "closest": closest, "date_format": date_format, "annual_compounded_returns": annual_compounded_returns, } asset_rr = asset_data.calculate_rolling_returns(**common_params) market_rr = market_data.calculate_rolling_returns(**common_params) cov = statistics.covariance(asset_rr.values, market_rr.values) market_var = statistics.variance(market_rr.values) beta = cov / market_var return beta