Compare commits

..

4 Commits

7 changed files with 366 additions and 348 deletions

View File

@ -21,14 +21,14 @@ Fincal aims to simplify things by allowing you to:
### Core features
- [ ] Add __setitem__
- [ ] Create emtpy TimeSeries object
- [ ] Read from CSV
- [x] Read from CSV
- [ ] Write to CSV
- [ ] Convert to dict
- [ ] Convert to list of dicts
### Fincal features
- [ ] Sync two TimeSeries
- [ ] Average rolling return
- [x] Average rolling return
- [ ] Sharpe ratio
- [ ] Jensen's Alpha
- [ ] Beta
- [ ] Max drawdown
- [x] Max drawdown

View File

@ -1,9 +1,11 @@
from __future__ import annotations
import csv
import datetime
import math
import pathlib
import statistics
from typing import Iterable, List, Literal, Mapping, TypedDict, Union
from typing import Iterable, List, Literal, Mapping, Tuple, TypedDict, Union
from dateutil.relativedelta import relativedelta
@ -581,6 +583,65 @@ class TimeSeries(TimeSeriesCore):
return output_ts
def _preprocess_csv(file_path: str | pathlib.Path, delimiter: str = ",", encoding: str = "utf-8") -> List[list]:
"""Preprocess csv data"""
if isinstance(file_path, str):
file_path = pathlib.Path(file_path)
if not file_path.exists():
raise ValueError("File not found. Check the file path")
with open(file_path, "r", encoding=encoding) as file:
reader = csv.reader(file, delimiter=delimiter)
csv_data = list(reader)
csv_data = [i for i in csv_data if i] # remove blank rows
if not csv_data:
raise ValueError("File is empty")
return csv_data
def read_csv(
csv_file_path: str | pathlib.Path,
frequency: Literal["D", "W", "M", "Q", "Y"],
date_format: str = None,
col_names: Tuple[str, str] = None,
col_index: Tuple[int, int] = (0, 1),
has_header: bool = True,
skip_rows: int = 0,
nrows: int = -1,
delimiter: str = ",",
encoding: str = "utf-8",
) -> TimeSeriesCore:
"""Reads Time Series data directly from a CSV file"""
data = _preprocess_csv(csv_file_path, delimiter, encoding)
read_start_row = skip_rows
read_end_row = skip_rows + nrows if nrows >= 0 else None
if has_header:
header = data[read_start_row]
print(header)
# fmt: off
# Black and pylance disagree on the foratting of the following line, hence formatting is disabled
data = data[(read_start_row + 1):read_end_row]
# fmt: on
if col_names is not None:
date_col = header.index(col_names[0])
value_col = header.index(col_names[1])
else:
date_col = col_index[0]
value_col = col_index[1]
ts_data = [(i[date_col], i[value_col]) for i in data if i]
return TimeSeries(ts_data, frequency=frequency, date_format=date_format)
if __name__ == "__main__":
date_series = [
datetime.datetime(2020, 1, 11),

View File

@ -116,7 +116,7 @@ def _find_closest_date(
raise ValueError(f"Invalid argument for if_not_found: {if_not_found}")
def _interval_to_years(interval_type: Literal["years", "months", "day"], interval_value: int) -> int:
def _interval_to_years(interval_type: Literal["years", "months", "day"], interval_value: int) -> float:
"""Converts any time period to years for use with compounding functions"""
year_conversion_factor = {"years": 1, "months": 12, "days": 365}

View File

@ -112,6 +112,10 @@ class TestTimeSeriesCore:
assert isinstance(ts, TimeSeriesCore)
assert isinstance(ts, Mapping)
class TestSlicing:
data = [("2021-01-01", 220), ("2021-02-01", 230), ("2021-03-01", 240)]
def test_getitem(self):
ts = TimeSeriesCore(self.data, frequency="M")
assert ts.dates[0] == datetime.datetime(2021, 1, 1, 0, 0)
@ -165,6 +169,15 @@ class TestTimeSeriesCore:
assert dates[0] == datetime.datetime(2021, 1, 1, 0, 0)
assert values[0] == 220
def test_iloc_slicing(self):
ts = TimeSeriesCore(self.data, frequency="M")
assert ts.iloc[0] == (datetime.datetime(2021, 1, 1), 220)
assert ts.iloc[-1] == (datetime.datetime(2021, 3, 1), 240)
ts_slice = ts.iloc[0:2]
assert isinstance(ts_slice, TimeSeriesCore)
assert len(ts_slice) == 2
class TestTimeSeriesCoreHeadTail:
data = [

View File

@ -1,82 +1,97 @@
import datetime
import os
import math
import random
from typing import Literal, Sequence
from typing import List
import pytest
from fincal.core import Frequency, Series
from dateutil.relativedelta import relativedelta
from fincal.core import AllFrequencies, Frequency
from fincal.exceptions import DateNotFoundError
from fincal.fincal import TimeSeries, create_date_series
from fincal.utils import FincalOptions
THIS_DIR = os.path.dirname(os.path.abspath(__file__))
sample_data_path = os.path.join(THIS_DIR, "data")
def create_prices(s0: float, mu: float, sigma: float, num_prices: int) -> list:
"""Generates a price following a geometric brownian motion process based on the input of the arguments.
Since this function is used only to generate data for tests, the seed is fixed as 1234.
Many of the tests rely on exact values generated using this seed.
If the seed is changed, those tests will fail.
Parameters:
------------
s0: float
Asset inital price.
mu: float
Interest rate expressed annual terms.
sigma: float
Volatility expressed annual terms.
num_prices: int
number of prices to generate
Returns:
--------
Returns a list of values generated using GBM algorithm
"""
random.seed(1234) # WARNING! Changing the seed will cause most tests to fail
all_values = []
for _ in range(num_prices):
s0 *= math.exp(
(mu - 0.5 * sigma**2) * (1.0 / 365.0) + sigma * math.sqrt(1.0 / 365.0) * random.gauss(mu=0, sigma=1)
)
all_values.append(round(s0, 2))
return all_values
def create_random_test_data(
frequency: str,
eomonth: bool,
n: int,
gaps: float,
month_position: Literal["start", "middle", "end"],
date_as_str: bool,
as_outer_type: Literal["dict", "list"] = "list",
as_inner_type: Literal["dict", "list", "tuple"] = "tuple",
) -> Sequence[tuple]:
start_dates = {
"start": datetime.datetime(2016, 1, 1),
"middle": datetime.datetime(2016, 1, 15),
"end": datetime.datetime(2016, 1, 31),
def create_test_data(
frequency: Frequency,
num: int = 1000,
skip_weekends: bool = False,
mu: float = 0.1,
sigma: float = 0.05,
eomonth: bool = False,
) -> List[tuple]:
"""Creates TimeSeries data
Parameters:
-----------
frequency: Frequency
The frequency of the time series data to be generated.
num: int
Number of date: value pairs to be generated.
skip_weekends: bool
Whether weekends (saturday, sunday) should be skipped.
Gets used only if the frequency is daily.
mu: float
Mean return for the values.
sigma: float
standard deviation of the values.
Returns:
--------
Returns a TimeSeries object
"""
start_date = datetime.datetime(2017, 1, 1)
timedelta_dict = {
frequency.freq_type: int(
frequency.value * num * (7 / 5 if frequency == AllFrequencies.D and skip_weekends else 1)
)
}
end_date = datetime.datetime(2021, 12, 31)
dates = create_date_series(start_dates[month_position], end_date, frequency=frequency, eomonth=eomonth)
dates = dates[:n]
if gaps:
num_gaps = int(len(dates) * gaps)
to_remove = random.sample(dates, num_gaps)
for i in to_remove:
dates.remove(i)
if date_as_str:
dates = [i.strftime("%Y-%m-%d") for i in dates]
values = [random.randint(8000, 90000) / 100 for _ in dates]
data = list(zip(dates, values))
if as_outer_type == "list":
if as_inner_type == "list":
data = [list(i) for i in data]
elif as_inner_type == "dict[1]":
data = [dict((i,)) for i in data]
elif as_inner_type == "dict[2]":
data = [dict(date=i, value=j) for i, j in data]
elif as_outer_type == "dict":
data = dict(data)
return data
def create_organised_test_data() -> dict:
"""Creates organised test data so that output is exactly same in each run"""
all_dates, all_values = [], []
prev_date, prev_number = datetime.datetime(2018, 1, 1), 1000
for i in range(1, 1000):
if i % 5 == 0:
prev_date += datetime.timedelta(days=3)
else:
prev_date += datetime.timedelta(days=1)
all_dates.append(prev_date)
for i in range(1, 1000):
rem = i % 7
if rem % 2:
prev_number -= rem
else:
prev_number += rem
all_values.append(prev_number)
return dict(zip(all_dates, all_values))
end_date = start_date + relativedelta(**timedelta_dict)
dates = create_date_series(start_date, end_date, frequency.symbol, skip_weekends=skip_weekends, eomonth=eomonth)
values = create_prices(1000, mu, sigma, num)
ts = list(zip(dates, values))
return ts
class TestDateSeries:
@ -141,47 +156,70 @@ class TestDateSeries:
assert datetime.datetime(2020, 11, 30) in d
class TestFincalBasic:
def test_creation(self):
data = create_random_test_data(
frequency="D", eomonth=False, n=50, gaps=0, month_position="start", date_as_str=True
)
time_series = TimeSeries(data, frequency="D")
assert len(time_series) == 50
assert isinstance(time_series.frequency, Frequency)
assert time_series.frequency.days == 1
class TestTimeSeriesCreation:
def test_creation_with_list_of_tuples(self):
ts_data = create_test_data(frequency=AllFrequencies.D, num=50)
ts = TimeSeries(ts_data, frequency="D")
assert len(ts) == 50
assert isinstance(ts.frequency, Frequency)
assert ts.frequency.days == 1
ffill_data = time_series.ffill()
assert len(ffill_data) == 50
def test_creation_with_string_dates(self):
ts_data = create_test_data(frequency=AllFrequencies.D, num=50)
ts_data1 = [(dt.strftime("%Y-%m-%d"), val) for dt, val in ts_data]
ts = TimeSeries(ts_data1, frequency="D")
datetime.datetime(2017, 1, 1) in ts
data = create_random_test_data(
frequency="D", eomonth=False, n=500, gaps=0.1, month_position="start", date_as_str=True
)
time_series = TimeSeries(data, frequency="D")
assert len(time_series) == 450
ts_data1 = [(dt.strftime("%d-%m-%Y"), val) for dt, val in ts_data]
ts = TimeSeries(ts_data1, frequency="D", date_format="%d-%m-%Y")
datetime.datetime(2017, 1, 1) in ts
ts_data1 = [(dt.strftime("%m-%d-%Y"), val) for dt, val in ts_data]
ts = TimeSeries(ts_data1, frequency="D", date_format="%m-%d-%Y")
datetime.datetime(2017, 1, 1) in ts
ts_data1 = [(dt.strftime("%m-%d-%Y %H:%M"), val) for dt, val in ts_data]
ts = TimeSeries(ts_data1, frequency="D", date_format="%m-%d-%Y %H:%M")
datetime.datetime(2017, 1, 1, 0, 0) in ts
def test_creation_with_list_of_dicts(self):
ts_data = create_test_data(frequency=AllFrequencies.D, num=50)
ts_data1 = [{"date": dt.strftime("%Y-%m-%d"), "value": val} for dt, val in ts_data]
ts = TimeSeries(ts_data1, frequency="D")
datetime.datetime(2017, 1, 1) in ts
def test_creation_with_list_of_lists(self):
ts_data = create_test_data(frequency=AllFrequencies.D, num=50)
ts_data1 = [[dt.strftime("%Y-%m-%d"), val] for dt, val in ts_data]
ts = TimeSeries(ts_data1, frequency="D")
datetime.datetime(2017, 1, 1) in ts
def test_creation_with_dict(self):
ts_data = create_test_data(frequency=AllFrequencies.D, num=50)
ts_data1 = [{dt.strftime("%Y-%m-%d"): val} for dt, val in ts_data]
ts = TimeSeries(ts_data1, frequency="D")
datetime.datetime(2017, 1, 1) in ts
class TestTimeSeriesBasics:
def test_fill(self):
data = create_random_test_data(
frequency="D", eomonth=False, n=500, gaps=0.1, month_position="start", date_as_str=True
)
time_series = TimeSeries(data, frequency="D")
ffill_data = time_series.ffill()
assert len(ffill_data) >= 498
ts_data = create_test_data(frequency=AllFrequencies.D, num=50, skip_weekends=True)
ts = TimeSeries(ts_data, frequency="D")
ffill_data = ts.ffill()
assert len(ffill_data) == 68
ffill_data = time_series.ffill(inplace=True)
ffill_data = ts.ffill(inplace=True)
assert ffill_data is None
assert len(time_series) >= 498
assert len(ts) == 68
data = create_random_test_data(
frequency="D", eomonth=False, n=500, gaps=0.1, month_position="start", date_as_str=True
)
time_series = TimeSeries(data, frequency="D")
bfill_data = time_series.bfill()
assert len(bfill_data) >= 498
ts_data = create_test_data(frequency=AllFrequencies.D, num=50, skip_weekends=True)
ts = TimeSeries(ts_data, frequency="D")
bfill_data = ts.bfill()
assert len(bfill_data) == 68
bfill_data = time_series.bfill(inplace=True)
bfill_data = ts.bfill(inplace=True)
assert bfill_data is None
assert len(time_series) >= 498
assert len(ts) == 68
data = [("2021-01-01", 220), ("2021-01-02", 230), ("2021-03-04", 240)]
ts = TimeSeries(data, frequency="D")
@ -191,32 +229,77 @@ class TestFincalBasic:
bf = ts.bfill()
assert bf["2021-01-03"][1] == 240
def test_iloc_slicing(self):
data = create_random_test_data(
frequency="D", eomonth=False, n=50, gaps=0, month_position="start", date_as_str=True
)
time_series = TimeSeries(data, frequency="D")
assert time_series.iloc[0] is not None
assert time_series.iloc[:3] is not None
assert time_series.iloc[5:7] is not None
assert isinstance(time_series.iloc[0], tuple)
assert isinstance(time_series.iloc[10:20], TimeSeries)
assert len(time_series.iloc[10:20]) == 10
def test_key_slicing(self):
data = create_random_test_data(
frequency="D", eomonth=False, n=50, gaps=0, month_position="start", date_as_str=True
)
time_series = TimeSeries(data, frequency="D")
available_date = time_series.iloc[5][0]
assert time_series[available_date] is not None
assert isinstance(time_series["dates"], Series)
assert isinstance(time_series["values"], Series)
assert len(time_series.dates) == 50
assert len(time_series.values) == 50
class TestReturns:
def test_returns_calc(self):
ts_data = create_test_data(AllFrequencies.D, skip_weekends=True)
ts = TimeSeries(ts_data, "D")
returns = ts.calculate_returns(
"2020-01-01", annual_compounded_returns=False, return_period_unit="years", return_period_value=1
)
assert round(returns[1], 6) == 0.112913
returns = ts.calculate_returns(
"2020-04-01", annual_compounded_returns=False, return_period_unit="months", return_period_value=3
)
assert round(returns[1], 6) == 0.015908
returns = ts.calculate_returns(
"2020-04-01", annual_compounded_returns=True, return_period_unit="months", return_period_value=3
)
assert round(returns[1], 6) == 0.065167
returns = ts.calculate_returns(
"2020-04-01", annual_compounded_returns=False, return_period_unit="days", return_period_value=90
)
assert round(returns[1], 6) == 0.017673
returns = ts.calculate_returns(
"2020-04-01", annual_compounded_returns=True, return_period_unit="days", return_period_value=90
)
assert round(returns[1], 6) == 0.073632
with pytest.raises(DateNotFoundError):
ts.calculate_returns("2020-04-04", return_period_unit="days", return_period_value=90, as_on_match="exact")
with pytest.raises(DateNotFoundError):
ts.calculate_returns("2020-04-04", return_period_unit="months", return_period_value=3, prior_match="exact")
def test_date_formats(self):
ts_data = create_test_data(AllFrequencies.D, skip_weekends=True)
ts = TimeSeries(ts_data, "D")
FincalOptions.date_format = "%d-%m-%Y"
with pytest.raises(ValueError):
ts.calculate_returns(
"2020-04-10", annual_compounded_returns=True, return_period_unit="days", return_period_value=90
)
returns1 = ts.calculate_returns(
"2020-04-01", return_period_unit="days", return_period_value=90, date_format="%Y-%m-%d"
)
returns2 = ts.calculate_returns("01-04-2020", return_period_unit="days", return_period_value=90)
assert round(returns1[1], 6) == round(returns2[1], 6) == 0.073632
FincalOptions.date_format = "%m-%d-%Y"
with pytest.raises(ValueError):
ts.calculate_returns(
"2020-04-01", annual_compounded_returns=True, return_period_unit="days", return_period_value=90
)
returns1 = ts.calculate_returns(
"2020-04-01", return_period_unit="days", return_period_value=90, date_format="%Y-%m-%d"
)
returns2 = ts.calculate_returns("04-01-2020", return_period_unit="days", return_period_value=90)
assert round(returns1[1], 6) == round(returns2[1], 6) == 0.073632
def test_limits(self):
FincalOptions.date_format = "%Y-%m-%d"
ts_data = create_test_data(AllFrequencies.D)
ts = TimeSeries(ts_data, "D")
with pytest.raises(DateNotFoundError):
ts.calculate_returns("2020-11-25", return_period_unit="days", return_period_value=90, closest_max_days=10)
class TestReturnsAgain:
data = [
("2020-01-01", 10),
("2020-02-01", 12),
@ -298,13 +381,58 @@ class TestReturns:
class TestVolatility:
data = create_organised_test_data()
def test_volatility_basic(self):
ts = TimeSeries(self.data, frequency="D")
sd = ts.volatility()
assert len(ts) == 999
assert round(sd, 6) == 0.057391
def test_daily_ts(self):
ts_data = create_test_data(AllFrequencies.D)
ts = TimeSeries(ts_data, "D")
assert len(ts) == 1000
sd = ts.volatility(annualize_volatility=False)
assert round(sd, 6) == 0.003004
assert round(sd, 6) == 0.002622
sd = ts.volatility()
assert round(sd, 6) == 0.050098
sd = ts.volatility(annual_compounded_returns=True)
assert round(sd, 4) == 37.9329
sd = ts.volatility(return_period_unit="months", annual_compounded_returns=True)
assert round(sd, 4) == 0.6778
sd = ts.volatility(return_period_unit="years")
assert round(sd, 6) == 0.023164
sd = ts.volatility(from_date="2017-10-01", to_date="2019-08-31", annualize_volatility=True)
assert round(sd, 6) == 0.050559
sd = ts.volatility(from_date="2017-02-01", frequency="M", return_period_unit="months")
assert round(sd, 6) == 0.050884
sd = ts.volatility(
frequency="M",
return_period_unit="months",
return_period_value=3,
annualize_volatility=False,
)
assert round(sd, 6) == 0.020547
class TestDrawdown:
def test_daily_ts(self):
ts_data = create_test_data(AllFrequencies.D, skip_weekends=True)
ts = TimeSeries(ts_data, "D")
mdd = ts.max_drawdown()
assert isinstance(mdd, dict)
assert len(mdd) == 3
assert all(i in mdd for i in ["start_date", "end_date", "drawdown"])
expeced_response = {
"start_date": datetime.datetime(2017, 6, 6, 0, 0),
"end_date": datetime.datetime(2017, 7, 31, 0, 0),
"drawdown": -0.028293686030751997,
}
assert mdd == expeced_response
def test_weekly_ts(self):
ts_data = create_test_data(AllFrequencies.W, mu=1, sigma=0.5)
ts = TimeSeries(ts_data, "W")
mdd = ts.max_drawdown()
assert isinstance(mdd, dict)
assert len(mdd) == 3
assert all(i in mdd for i in ["start_date", "end_date", "drawdown"])
expeced_response = {
"start_date": datetime.datetime(2019, 2, 17, 0, 0),
"end_date": datetime.datetime(2019, 11, 17, 0, 0),
"drawdown": -0.2584760499552089,
}
assert mdd == expeced_response

View File

@ -1,210 +0,0 @@
import datetime
import math
import random
from unittest import skip
import pytest
from dateutil.relativedelta import relativedelta
from fincal.core import AllFrequencies, Frequency
from fincal.exceptions import DateNotFoundError
from fincal.fincal import MaxDrawdown, TimeSeries, create_date_series
from fincal.utils import FincalOptions
def create_prices(s0: float, mu: float, sigma: float, num_prices: int) -> list:
"""Generates a price following a geometric brownian motion process based on the input of the arguments.
Since this function is used only to generate data for tests, the seed is fixed as 1234.
Many of the tests rely on exact values generated using this seed.
If the seed is changed, those tests will fail.
Parameters:
------------
s0: float
Asset inital price.
mu: float
Interest rate expressed annual terms.
sigma: float
Volatility expressed annual terms.
num_prices: int
number of prices to generate
Returns:
--------
Returns a list of values generated using GBM algorithm
"""
random.seed(1234) # WARNING! Changing the seed will cause most tests to fail
all_values = []
for _ in range(num_prices):
s0 *= math.exp(
(mu - 0.5 * sigma**2) * (1.0 / 365.0) + sigma * math.sqrt(1.0 / 365.0) * random.gauss(mu=0, sigma=1)
)
all_values.append(round(s0, 2))
return all_values
def create_test_timeseries(
frequency: Frequency, num: int = 1000, skip_weekends: bool = False, mu: float = 0.1, sigma: float = 0.05
) -> TimeSeries:
"""Creates TimeSeries data
Parameters:
-----------
frequency: Frequency
The frequency of the time series data to be generated.
num: int
Number of date: value pairs to be generated.
skip_weekends: bool
Whether weekends (saturday, sunday) should be skipped.
Gets used only if the frequency is daily.
mu: float
Mean return for the values.
sigma: float
standard deviation of the values.
Returns:
--------
Returns a TimeSeries object
"""
start_date = datetime.datetime(2017, 1, 1)
timedelta_dict = {
frequency.freq_type: int(
frequency.value * num * (7 / 5 if frequency == AllFrequencies.D and skip_weekends else 1)
)
}
end_date = start_date + relativedelta(**timedelta_dict)
dates = create_date_series(start_date, end_date, frequency.symbol, skip_weekends=skip_weekends)
values = create_prices(1000, mu, sigma, num)
ts = TimeSeries(dict(zip(dates, values)), frequency=frequency.symbol)
return ts
class TestReturns:
def test_returns_calc(self):
ts = create_test_timeseries(AllFrequencies.D, skip_weekends=True)
returns = ts.calculate_returns(
"2020-01-01", annual_compounded_returns=False, return_period_unit="years", return_period_value=1
)
assert round(returns[1], 6) == 0.112913
returns = ts.calculate_returns(
"2020-04-01", annual_compounded_returns=False, return_period_unit="months", return_period_value=3
)
assert round(returns[1], 6) == 0.015908
returns = ts.calculate_returns(
"2020-04-01", annual_compounded_returns=True, return_period_unit="months", return_period_value=3
)
assert round(returns[1], 6) == 0.065167
returns = ts.calculate_returns(
"2020-04-01", annual_compounded_returns=False, return_period_unit="days", return_period_value=90
)
assert round(returns[1], 6) == 0.017673
returns = ts.calculate_returns(
"2020-04-01", annual_compounded_returns=True, return_period_unit="days", return_period_value=90
)
assert round(returns[1], 6) == 0.073632
with pytest.raises(DateNotFoundError):
ts.calculate_returns("2020-04-04", return_period_unit="days", return_period_value=90, as_on_match="exact")
with pytest.raises(DateNotFoundError):
ts.calculate_returns("2020-04-04", return_period_unit="months", return_period_value=3, prior_match="exact")
def test_date_formats(self):
ts = create_test_timeseries(AllFrequencies.D, skip_weekends=True)
FincalOptions.date_format = "%d-%m-%Y"
with pytest.raises(ValueError):
ts.calculate_returns(
"2020-04-10", annual_compounded_returns=True, return_period_unit="days", return_period_value=90
)
returns1 = ts.calculate_returns(
"2020-04-01", return_period_unit="days", return_period_value=90, date_format="%Y-%m-%d"
)
returns2 = ts.calculate_returns("01-04-2020", return_period_unit="days", return_period_value=90)
assert round(returns1[1], 6) == round(returns2[1], 6) == 0.073632
FincalOptions.date_format = "%m-%d-%Y"
with pytest.raises(ValueError):
ts.calculate_returns(
"2020-04-01", annual_compounded_returns=True, return_period_unit="days", return_period_value=90
)
returns1 = ts.calculate_returns(
"2020-04-01", return_period_unit="days", return_period_value=90, date_format="%Y-%m-%d"
)
returns2 = ts.calculate_returns("04-01-2020", return_period_unit="days", return_period_value=90)
assert round(returns1[1], 6) == round(returns2[1], 6) == 0.073632
def test_limits(self):
FincalOptions.date_format = "%Y-%m-%d"
ts = create_test_timeseries(AllFrequencies.D)
with pytest.raises(DateNotFoundError):
ts.calculate_returns("2020-11-25", return_period_unit="days", return_period_value=90, closest_max_days=10)
class TestVolatility:
def test_daily_ts(self):
ts = create_test_timeseries(AllFrequencies.D)
assert len(ts) == 1000
sd = ts.volatility(annualize_volatility=False)
assert round(sd, 6) == 0.002622
sd = ts.volatility()
assert round(sd, 6) == 0.050098
sd = ts.volatility(annual_compounded_returns=True)
assert round(sd, 4) == 37.9329
sd = ts.volatility(return_period_unit="months", annual_compounded_returns=True)
assert round(sd, 4) == 0.6778
sd = ts.volatility(return_period_unit="years")
assert round(sd, 6) == 0.023164
sd = ts.volatility(from_date="2017-10-01", to_date="2019-08-31", annualize_volatility=True)
assert round(sd, 6) == 0.050559
sd = ts.volatility(from_date="2017-02-01", frequency="M", return_period_unit="months")
assert round(sd, 6) == 0.050884
sd = ts.volatility(
frequency="M",
return_period_unit="months",
return_period_value=3,
annualize_volatility=False,
)
assert round(sd, 6) == 0.020547
class TestDrawdown:
def test_daily_ts(self):
ts = create_test_timeseries(AllFrequencies.D, skip_weekends=True)
mdd = ts.max_drawdown()
assert isinstance(mdd, dict)
assert len(mdd) == 3
assert all(i in mdd for i in ["start_date", "end_date", "drawdown"])
expeced_response = {
"start_date": datetime.datetime(2017, 6, 6, 0, 0),
"end_date": datetime.datetime(2017, 7, 31, 0, 0),
"drawdown": -0.028293686030751997,
}
assert mdd == expeced_response
def test_weekly_ts(self):
ts = create_test_timeseries(AllFrequencies.W, mu=1, sigma=0.5)
mdd = ts.max_drawdown()
assert isinstance(mdd, dict)
assert len(mdd) == 3
assert all(i in mdd for i in ["start_date", "end_date", "drawdown"])
expeced_response = {
"start_date": datetime.datetime(2019, 2, 17, 0, 0),
"end_date": datetime.datetime(2019, 11, 17, 0, 0),
"drawdown": -0.2584760499552089,
}
assert mdd == expeced_response

26
tests/test_utils.py Normal file
View File

@ -0,0 +1,26 @@
import datetime
import pytest
from fincal.utils import _interval_to_years, _parse_date
class TestParseDate:
def test_parsing(self):
dt = datetime.datetime(2020, 1, 1)
assert _parse_date(dt) == dt
assert _parse_date(dt.strftime("%Y-%m-%d")) == dt
assert _parse_date(datetime.date(2020, 1, 1)) == dt
assert _parse_date("01-01-2020", date_format="%d-%m-%Y") == dt
assert _parse_date("01-01-2020", date_format="%m-%d-%Y") == dt
def test_errors(self):
with pytest.raises(ValueError):
_parse_date("01-01-2020")
with pytest.raises(ValueError):
_parse_date("abcdefg")
class TestIntervalToYears:
def test_months(self):
assert _interval_to_years("months", 6) == 0.5