Compare commits

..

No commits in common. "ef2973a1d1c3577ba5824255d21062819275c90c" and "77845ff501e5da9812694174b6a5360da9866949" have entirely different histories.

3 changed files with 109 additions and 102 deletions

View File

@ -29,12 +29,71 @@ class AllFrequencies:
Y = Frequency("annual", "years", 1, 365, "Y")
class DateNotFoundError(Exception):
"""Exception to be raised when date is not found"""
def _preprocess_timeseries(
data: Union[
Sequence[Iterable[Union[str, datetime.datetime, float]]],
Sequence[Mapping[str, Union[float, datetime.datetime]]],
Sequence[Mapping[Union[str, datetime.datetime], float]],
Mapping[Union[str, datetime.datetime], float],
],
date_format: str,
) -> List[Tuple[datetime.datetime, float]]:
"""Converts any type of list to the correct type"""
def __init__(self, message, date):
message = f"{message}: {date}"
super().__init__(message)
if isinstance(data, Sequence):
if isinstance(data[0], Mapping):
if len(data[0].keys()) == 2:
current_data = [tuple(i.values()) for i in data]
elif len(data[0].keys()) == 1:
current_data = [tuple(*i.items()) for i in data]
else:
raise TypeError("Could not parse the data")
current_data = _preprocess_timeseries(current_data, date_format)
elif isinstance(data[0], Sequence):
if isinstance(data[0][0], str):
current_data = []
for i in data:
row = datetime.datetime.strptime(i[0], date_format), i[1]
current_data.append(row)
elif isinstance(data[0][0], datetime.datetime):
current_data = [(i, j) for i, j in data]
else:
raise TypeError("Could not parse the data")
else:
raise TypeError("Could not parse the data")
elif isinstance(data, Mapping):
current_data = [(k, v) for k, v in data.items()]
current_data = _preprocess_timeseries(current_data, date_format)
else:
raise TypeError("Could not parse the data")
current_data.sort()
return current_data
def _preprocess_match_options(as_on_match: str, prior_match: str, closest: str) -> datetime.timedelta:
"""Checks the arguments and returns appropriate timedelta objects"""
deltas = {"exact": 0, "previous": -1, "next": 1}
if closest not in deltas.keys():
raise ValueError(f"Invalid closest argument: {closest}")
as_on_match = closest if as_on_match == "closest" else as_on_match
prior_match = closest if prior_match == "closest" else prior_match
if as_on_match in deltas.keys():
as_on_delta = datetime.timedelta(days=deltas[as_on_match])
else:
raise ValueError(f"Invalid as_on_match argument: {as_on_match}")
if prior_match in deltas.keys():
prior_delta = datetime.timedelta(days=deltas[prior_match])
else:
raise ValueError(f"Invalid prior_match argument: {prior_match}")
return as_on_delta, prior_delta
def _parse_date(date: str, date_format: str = None):
@ -55,85 +114,15 @@ def _parse_date(date: str, date_format: str = None):
return date
def _preprocess_timeseries(
data: Union[
Sequence[Iterable[Union[str, datetime.datetime, float]]],
Sequence[Mapping[str, Union[float, datetime.datetime]]],
Sequence[Mapping[Union[str, datetime.datetime], float]],
Mapping[Union[str, datetime.datetime], float],
],
date_format: str,
) -> List[Tuple[datetime.datetime, float]]:
"""Converts any type of list to the correct type"""
if isinstance(data, Mapping):
current_data = [(k, v) for k, v in data.items()]
return _preprocess_timeseries(current_data, date_format)
if not isinstance(data, Sequence):
raise TypeError("Could not parse the data")
if isinstance(data[0], Sequence):
return sorted([(_parse_date(i, date_format), j) for i, j in data])
if not isinstance(data[0], Mapping):
raise TypeError("Could not parse the data")
if len(data[0]) == 1:
current_data = [tuple(*i.items()) for i in data]
elif len(data[0]) == 2:
current_data = [tuple(i.values()) for i in data]
else:
raise TypeError("Could not parse the data")
return _preprocess_timeseries(current_data, date_format)
def _preprocess_match_options(as_on_match: str, prior_match: str, closest: str) -> datetime.timedelta:
"""Checks the arguments and returns appropriate timedelta objects"""
deltas = {"exact": 0, "previous": -1, "next": 1}
if closest not in deltas.keys():
raise ValueError(f"Invalid argument for closest: {closest}")
as_on_match = closest if as_on_match == "closest" else as_on_match
prior_match = closest if prior_match == "closest" else prior_match
if as_on_match in deltas.keys():
as_on_delta = datetime.timedelta(days=deltas[as_on_match])
else:
raise ValueError(f"Invalid as_on_match argument: {as_on_match}")
if prior_match in deltas.keys():
prior_delta = datetime.timedelta(days=deltas[prior_match])
else:
raise ValueError(f"Invalid prior_match argument: {prior_match}")
return as_on_delta, prior_delta
def _find_closest_date(data, date, delta, if_not_found):
"""Helper function to find data for the closest available date"""
row = data.get(date, None)
if row is not None:
return date, row
if delta:
return _find_closest_date(data, date + delta, delta, if_not_found)
if if_not_found == "fail":
raise DateNotFoundError("Data not found for date", date)
if if_not_found == "nan":
return date, float("NaN")
raise ValueError(f"Invalid argument for if_not_found: {if_not_found}")
def _interval_to_years(interval_type: Literal["years", "months", "day"], interval_value: int) -> int:
def _interval_to_years(interval_type: Literal['years', 'months', 'day'], interval_value: int) -> int:
"""Converts any time period to years for use with compounding functions"""
year_conversion_factor = {"years": 1, "months": 12, "days": 365}
years = interval_value / year_conversion_factor[interval_type]
day_conversion_factor = {
'years': 1,
'months': 12,
'days': 365
}
years = interval_value/day_conversion_factor[interval_type]
return years

View File

@ -8,7 +8,6 @@ from dateutil.relativedelta import relativedelta
from .core import (
AllFrequencies,
TimeSeriesCore,
_find_closest_date,
_interval_to_years,
_parse_date,
_preprocess_match_options,
@ -190,19 +189,40 @@ class TimeSeries(TimeSeriesCore):
as_on = _parse_date(as_on, date_format)
as_on_delta, prior_delta = _preprocess_match_options(as_on_match, prior_match, closest)
original_as_on = as_on
while True:
current = self.data.get(as_on, None)
if current is not None:
break
elif not as_on_delta:
if if_not_found == 'fail':
raise ValueError(f"As on date {original_as_on} not found")
elif if_not_found == 'nan':
return as_on, float("NaN")
else:
raise ValueError(f"Invalid argument for if_not_found: {if_not_found}")
as_on += as_on_delta
prev_date = as_on - relativedelta(**{interval_type: interval_value})
current = _find_closest_date(self.data, as_on, as_on_delta, if_not_found)
previous = _find_closest_date(self.data, prev_date, prior_delta, if_not_found)
while True:
previous = self.data.get(prev_date, None)
if previous is not None:
break
elif not prior_delta:
if if_not_found == 'fail':
raise ValueError(f"Previous date {previous} not found")
elif if_not_found == 'nan':
return (as_on if return_actual_date else original_as_on), float("NaN")
else:
raise ValueError(f"Invalid argument for if_not_found: {if_not_found}")
prev_date += prior_delta
if current[1] == str('nan') or previous[1] == str('nan'):
return as_on, float('NaN')
returns = current[1] / previous[1]
returns = current / previous
if compounding:
years = _interval_to_years(interval_type, interval_value)
returns = returns ** (1 / years)
return (current[0] if return_actual_date else as_on), returns - 1
return (as_on if return_actual_date else original_as_on), returns - 1
def calculate_rolling_returns(
self,
@ -254,13 +274,13 @@ class TimeSeries(TimeSeriesCore):
if __name__ == "__main__":
date_series = [
datetime.datetime(2020, 1, 11),
datetime.datetime(2020, 1, 1),
datetime.datetime(2020, 1, 2),
datetime.datetime(2020, 1, 3),
datetime.datetime(2020, 1, 4),
datetime.datetime(2020, 1, 7),
datetime.datetime(2020, 1, 8),
datetime.datetime(2020, 1, 9),
datetime.datetime(2020, 1, 10),
datetime.datetime(2020, 1, 12),
datetime.datetime(2020, 1, 13),
datetime.datetime(2020, 1, 14),
datetime.datetime(2020, 1, 17),
datetime.datetime(2020, 1, 18),
datetime.datetime(2020, 1, 19),
datetime.datetime(2020, 1, 20),
datetime.datetime(2020, 1, 22),
]

View File

@ -4,7 +4,7 @@ import random
from typing import Literal, Sequence
import pytest
from fincal.core import DateNotFoundError, FincalOptions, Frequency, Series
from fincal.core import FincalOptions, Frequency, Series
from fincal.fincal import TimeSeries, create_date_series
THIS_DIR = os.path.dirname(os.path.abspath(__file__))
@ -209,10 +209,8 @@ class TestReturns:
assert round(returns[1], 4) == 5.727
returns = ts.calculate_returns("2020-04-10", compounding=True, interval_type='days', interval_value=90)
assert round(returns[1], 4) == 5.727
with pytest.raises(DateNotFoundError):
with pytest.raises(ValueError):
ts.calculate_returns("2020-04-10", interval_type='days', interval_value=90, as_on_match='exact')
with pytest.raises(DateNotFoundError):
ts.calculate_returns("2020-04-10", interval_type='days', interval_value=90, prior_match='exact')
def test_date_formats(self):
ts = TimeSeries(self.data, frequency='M')