Compare commits

...

2 Commits

Author SHA1 Message Date
6c8800bef2 Implemented sortino ratio 2022-06-06 22:10:16 +05:30
f46ebaa8a9 Renamed test file 2022-06-06 21:58:07 +05:30
2 changed files with 112 additions and 0 deletions

View File

@ -455,3 +455,115 @@ def correlation(
cor = statistics.correlation(asset_rr.values, market_rr.values) cor = statistics.correlation(asset_rr.values, market_rr.values)
return cor return cor
@date_parser(3, 4)
def sortino_ratio(
time_series_data: TimeSeries,
risk_free_data: TimeSeries = None,
risk_free_rate: float = None,
from_date: str | datetime.datetime = None,
to_date: str | datetime.datetime = None,
frequency: Literal["D", "W", "M", "Q", "H", "Y"] = None,
return_period_unit: Literal["years", "months", "days"] = "years",
return_period_value: int = 1,
as_on_match: str = "closest",
prior_match: str = "closest",
closest: Literal["previous", "next"] = "previous",
date_format: str = None,
) -> float:
"""Calculate the Sharpe ratio of any time series
Sharpe ratio is a measure of returns per unit of risk,
where risk is measured by the standard deviation of the returns.
The formula for Sharpe ratio is:
(average asset return - risk free rate)/volatility of asset returns
Parameters
----------
time_series_data:
The time series for which Sharpe ratio needs to be calculated
risk_free_data:
Risk free rates as time series data.
This should be the time series of risk free returns,
and not the underlying asset value.
risk_free_rate:
Risk free rate to be used.
Either risk_free_data or risk_free_rate needs to be provided.
If both are provided, the time series data will be used.
from_date:
Start date from which returns should be calculated.
Defaults to the first date of the series.
to_date:
End date till which returns should be calculated.
Defaults to the last date of the series.
frequency:
The frequency at which returns should be calculated.
return_period_unit: 'years', 'months', 'days'
The type of time period to use for return calculation.
return_period_value: int
The value of the specified interval type over which returns needs to be calculated.
as_on_match: str, optional
The mode of matching the as_on_date. Refer closest.
prior_match: str, optional
The mode of matching the prior_date. Refer closest.
closest: str, optional
The mode of matching the closest date.
Valid values are 'exact', 'previous', 'next' and next.
The date format to use for this operation.
Should be passed as a datetime library compatible string.
Sets the date format only for this operation. To set it globally, use FincalOptions.date_format
Returns
-------
Value of Sharpe ratio as a float.
Raises
------
ValueError
If risk free data or risk free rate is not provided.
"""
interval_days = int(_interval_to_years(return_period_unit, return_period_value) * 365 + 1)
if from_date is None:
from_date = time_series_data.start_date + datetime.timedelta(days=interval_days)
if to_date is None:
to_date = time_series_data.end_date
if risk_free_data is None and risk_free_rate is None:
raise ValueError("At least one of risk_free_data or risk_free rate is required")
elif risk_free_data is not None:
risk_free_rate = risk_free_data.mean()
common_params = {
"from_date": from_date,
"to_date": to_date,
"frequency": frequency,
"return_period_unit": return_period_unit,
"return_period_value": return_period_value,
"as_on_match": as_on_match,
"prior_match": prior_match,
"closest": closest,
"date_format": date_format,
}
average_rr_ts = time_series_data.calculate_rolling_returns(**common_params, annual_compounded_returns=True)
average_rr = statistics.mean(average_rr_ts.values)
excess_returns = average_rr - risk_free_rate
sd = statistics.stdev([i for i in average_rr_ts.values if i < 0])
sortino_ratio_value = excess_returns / sd
return sortino_ratio_value