Compare commits
3 Commits
c992905bf6
...
a19f7e7b21
Author | SHA1 | Date | |
---|---|---|---|
a19f7e7b21 | |||
2237692677 | |||
1758df0124 |
@ -407,7 +407,7 @@ class TimeSeries(TimeSeriesCore):
|
||||
if_not_found: Literal["fail", "nan"] = "fail",
|
||||
annual_compounded_returns: bool = None,
|
||||
date_format: str = None,
|
||||
):
|
||||
) -> float:
|
||||
"""Calculates the volatility of the time series.add()
|
||||
|
||||
The volatility is calculated as the standard deviaion of periodic returns.
|
||||
@ -431,6 +431,20 @@ class TimeSeries(TimeSeriesCore):
|
||||
Number of traded days per year to be considered for annualizing volatility.
|
||||
Only used when annualizing volatility for a time series with daily frequency.
|
||||
If not provided, will use the value in FincalOptions.traded_days.
|
||||
|
||||
Remaining options are passed on to rolling_return function.
|
||||
|
||||
Returns:
|
||||
-------
|
||||
Returns the volatility number as float
|
||||
|
||||
Raises:
|
||||
-------
|
||||
ValueError: If frequency string is outside valid values
|
||||
|
||||
Also see:
|
||||
--------
|
||||
TimeSeries.calculate_rolling_returns()
|
||||
"""
|
||||
|
||||
if frequency is None:
|
||||
@ -473,6 +487,54 @@ class TimeSeries(TimeSeriesCore):
|
||||
|
||||
return sd
|
||||
|
||||
def average_rolling_return(self, **kwargs) -> float:
|
||||
"""Calculates the average rolling return for a given period
|
||||
|
||||
Parameters
|
||||
----------
|
||||
kwargs: parameters to be passed to the calculate_rolling_returns() function
|
||||
|
||||
Returns
|
||||
-------
|
||||
float
|
||||
returns the average rolling return for a given period
|
||||
|
||||
Also see:
|
||||
---------
|
||||
TimeSeries.calculate_rolling_returns()
|
||||
"""
|
||||
|
||||
kwargs["return_period_unit"] = kwargs.get("return_period_unit", self.frequency.freq_type)
|
||||
kwargs["return_period_value"] = kwargs.get("return_period_value", 1)
|
||||
kwargs["to_date"] = kwargs.get("to_date", self.end_date)
|
||||
|
||||
if kwargs.get("from_date", None) is None:
|
||||
start_date = self.start_date + relativedelta(
|
||||
**{kwargs["return_period_unit"]: kwargs["return_period_value"]}
|
||||
)
|
||||
kwargs["from_date"] = start_date
|
||||
|
||||
rr = self.calculate_rolling_returns(**kwargs)
|
||||
return statistics.mean(rr.values)
|
||||
|
||||
def max_drawdown(self):
|
||||
max_val_dict = {}
|
||||
|
||||
prev_val = 0
|
||||
prev_date = list(self.data)[0]
|
||||
|
||||
for dt, val in self.data.items():
|
||||
if val > prev_val:
|
||||
max_val_dict[dt] = (dt, val, 0)
|
||||
prev_date, prev_val = dt, val
|
||||
else:
|
||||
max_val_dict[dt] = (prev_date, prev_val, val / prev_val - 1)
|
||||
|
||||
max_drawdown = min(max_val_dict.items(), key=lambda x: x[1][2])
|
||||
max_drawdown = dict(start_date=max_drawdown[1][0], end_date=max_drawdown[0], drawdown=max_drawdown[1][2])
|
||||
|
||||
return max_drawdown
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
date_series = [
|
||||
|
@ -168,3 +168,12 @@ class TestVolatility:
|
||||
assert round(sd, 6) == 0.023164
|
||||
sd = ts.volatility(from_date="2017-10-01", to_date="2019-08-31", annualize_volatility=True)
|
||||
assert round(sd, 6) == 0.050559
|
||||
sd = ts.volatility(from_date="2017-02-01", frequency="M", return_period_unit="months")
|
||||
assert round(sd, 6) == 0.050884
|
||||
sd = ts.volatility(
|
||||
frequency="M",
|
||||
return_period_unit="months",
|
||||
return_period_value=3,
|
||||
annualize_volatility=False,
|
||||
)
|
||||
assert round(sd, 6) == 0.020547
|
||||
|
Loading…
Reference in New Issue
Block a user