Compare commits

..

3 Commits

Author SHA1 Message Date
a19f7e7b21 added max_drawdown function 2022-03-14 23:54:54 +05:30
2237692677 Added more volatility tests 2022-03-13 22:52:41 +05:30
1758df0124 Added average rolling return function 2022-03-13 22:52:23 +05:30
2 changed files with 72 additions and 1 deletions

View File

@ -407,7 +407,7 @@ class TimeSeries(TimeSeriesCore):
if_not_found: Literal["fail", "nan"] = "fail",
annual_compounded_returns: bool = None,
date_format: str = None,
):
) -> float:
"""Calculates the volatility of the time series.add()
The volatility is calculated as the standard deviaion of periodic returns.
@ -431,6 +431,20 @@ class TimeSeries(TimeSeriesCore):
Number of traded days per year to be considered for annualizing volatility.
Only used when annualizing volatility for a time series with daily frequency.
If not provided, will use the value in FincalOptions.traded_days.
Remaining options are passed on to rolling_return function.
Returns:
-------
Returns the volatility number as float
Raises:
-------
ValueError: If frequency string is outside valid values
Also see:
--------
TimeSeries.calculate_rolling_returns()
"""
if frequency is None:
@ -473,6 +487,54 @@ class TimeSeries(TimeSeriesCore):
return sd
def average_rolling_return(self, **kwargs) -> float:
"""Calculates the average rolling return for a given period
Parameters
----------
kwargs: parameters to be passed to the calculate_rolling_returns() function
Returns
-------
float
returns the average rolling return for a given period
Also see:
---------
TimeSeries.calculate_rolling_returns()
"""
kwargs["return_period_unit"] = kwargs.get("return_period_unit", self.frequency.freq_type)
kwargs["return_period_value"] = kwargs.get("return_period_value", 1)
kwargs["to_date"] = kwargs.get("to_date", self.end_date)
if kwargs.get("from_date", None) is None:
start_date = self.start_date + relativedelta(
**{kwargs["return_period_unit"]: kwargs["return_period_value"]}
)
kwargs["from_date"] = start_date
rr = self.calculate_rolling_returns(**kwargs)
return statistics.mean(rr.values)
def max_drawdown(self):
max_val_dict = {}
prev_val = 0
prev_date = list(self.data)[0]
for dt, val in self.data.items():
if val > prev_val:
max_val_dict[dt] = (dt, val, 0)
prev_date, prev_val = dt, val
else:
max_val_dict[dt] = (prev_date, prev_val, val / prev_val - 1)
max_drawdown = min(max_val_dict.items(), key=lambda x: x[1][2])
max_drawdown = dict(start_date=max_drawdown[1][0], end_date=max_drawdown[0], drawdown=max_drawdown[1][2])
return max_drawdown
if __name__ == "__main__":
date_series = [

View File

@ -168,3 +168,12 @@ class TestVolatility:
assert round(sd, 6) == 0.023164
sd = ts.volatility(from_date="2017-10-01", to_date="2019-08-31", annualize_volatility=True)
assert round(sd, 6) == 0.050559
sd = ts.volatility(from_date="2017-02-01", frequency="M", return_period_unit="months")
assert round(sd, 6) == 0.050884
sd = ts.volatility(
frequency="M",
return_period_unit="months",
return_period_value=3,
annualize_volatility=False,
)
assert round(sd, 6) == 0.020547