Compare commits

..

No commits in common. "b34c14d778717147e4742576aa7692152f4d24ed" and "a19f7e7b21723695e9d87f2a713d855eb5c9af13" have entirely different histories.

3 changed files with 26 additions and 97 deletions

View File

@ -236,12 +236,12 @@ class TimeSeriesCore(UserDict):
self.data = dict(data)
if len(self.data) != len(data):
print("Warning: The input data contains duplicate dates which have been ignored.")
self.frequency: Frequency = getattr(AllFrequencies, frequency)
self.iter_num: int = -1
self._dates: list = None
self._values: list = None
self._start_date: datetime.datetime = None
self._end_date: datetime.datetime = None
self.frequency = getattr(AllFrequencies, frequency)
self.iter_num = -1
self._dates = None
self._values = None
self._start_date = None
self._end_date = None
@property
def dates(self) -> Series:

View File

@ -3,11 +3,11 @@ from __future__ import annotations
import datetime
import math
import statistics
from typing import Iterable, List, Literal, Mapping, TypedDict, Union
from typing import Iterable, List, Literal, Mapping, Union
from dateutil.relativedelta import relativedelta
from .core import AllFrequencies, Frequency, Series, TimeSeriesCore, date_parser
from .core import AllFrequencies, Series, TimeSeriesCore, date_parser
from .utils import (
FincalOptions,
_find_closest_date,
@ -16,12 +16,6 @@ from .utils import (
)
class MaxDrawdown(TypedDict):
start_date: datetime.datetime
end_date: datetime.datetime
drawdown: float
@date_parser(0, 1)
def create_date_series(
start_date: Union[str, datetime.datetime],
@ -121,11 +115,11 @@ class TimeSeries(TimeSeriesCore):
super().__init__(data, frequency, date_format)
def info(self) -> str:
def info(self):
"""Summary info about the TimeSeries object"""
total_dates: int = len(self.data.keys())
res_string: str = "First date: {}\nLast date: {}\nNumber of rows: {}"
total_dates = len(self.data.keys())
res_string = "First date: {}\nLast date: {}\nNumber of rows: {}"
return res_string.format(self.start_date, self.end_date, total_dates)
def ffill(self, inplace: bool = False, limit: int = None) -> Union[TimeSeries, None]:
@ -144,7 +138,7 @@ class TimeSeries(TimeSeriesCore):
Returns a TimeSeries object if inplace is False, otherwise None
"""
eomonth: bool = True if self.frequency.days >= AllFrequencies.M.days else False
eomonth = True if self.frequency.days >= AllFrequencies.M.days else False
dates_to_fill = create_date_series(self.start_date, self.end_date, self.frequency.symbol, eomonth)
new_ts = dict()
@ -177,7 +171,7 @@ class TimeSeries(TimeSeriesCore):
Returns a TimeSeries object if inplace is False, otherwise None
"""
eomonth: bool = True if self.frequency.days >= AllFrequencies.M.days else False
eomonth = True if self.frequency.days >= AllFrequencies.M.days else False
dates_to_fill = create_date_series(self.start_date, self.end_date, self.frequency.symbol, eomonth)
dates_to_fill.append(self.end_date)
@ -523,58 +517,24 @@ class TimeSeries(TimeSeriesCore):
rr = self.calculate_rolling_returns(**kwargs)
return statistics.mean(rr.values)
def max_drawdown(self) -> MaxDrawdown:
"""Calculates the maximum fall the stock has taken between any two points.
def max_drawdown(self):
max_val_dict = {}
Returns
-------
MaxDrawdown
Returns the start_date, end_date, and the drawdown value in decimal.
"""
drawdowns: dict = dict()
prev_val: float = 0
prev_date: datetime.datetime = list(self.data)[0]
prev_val = 0
prev_date = list(self.data)[0]
for dt, val in self.data.items():
if val > prev_val:
drawdowns[dt] = (dt, val, 0)
max_val_dict[dt] = (dt, val, 0)
prev_date, prev_val = dt, val
else:
drawdowns[dt] = (prev_date, prev_val, val / prev_val - 1)
max_val_dict[dt] = (prev_date, prev_val, val / prev_val - 1)
max_drawdown = min(drawdowns.items(), key=lambda x: x[1][2])
max_drawdown: MaxDrawdown = dict(
start_date=max_drawdown[1][0], end_date=max_drawdown[0], drawdown=max_drawdown[1][2]
)
max_drawdown = min(max_val_dict.items(), key=lambda x: x[1][2])
max_drawdown = dict(start_date=max_drawdown[1][0], end_date=max_drawdown[0], drawdown=max_drawdown[1][2])
return max_drawdown
def expand(
self, to_frequency: Literal["D", "W", "M", "Q", "H"], method: Literal["ffill", "bfill", "interpolate"]
) -> TimeSeries:
try:
to_frequency: Frequency = getattr(AllFrequencies, to_frequency)
except AttributeError:
raise ValueError(f"Invalid argument for to_frequency {to_frequency}")
if to_frequency.days >= self.frequency.days:
raise ValueError("TimeSeries can be only expanded to a higher frequency")
new_dates = create_date_series(self.start_date, self.end_date, frequency=to_frequency.symbol)
new_ts: dict = {dt: self.data.get(dt, None) for dt in new_dates}
output_ts: TimeSeries = TimeSeries(new_ts, frequency=to_frequency.symbol)
if method == "ffill":
output_ts.ffill(inplace=True)
elif method == "bfill":
output_ts.bfill(inplace=True)
else:
raise NotImplementedError(f"Method {method} not implemented")
return output_ts
if __name__ == "__main__":
date_series = [

View File

@ -1,13 +1,12 @@
import datetime
import math
import random
from unittest import skip
import pytest
from dateutil.relativedelta import relativedelta
from fincal.core import AllFrequencies, Frequency
from fincal.exceptions import DateNotFoundError
from fincal.fincal import MaxDrawdown, TimeSeries, create_date_series
from fincal.fincal import TimeSeries, create_date_series
from fincal.utils import FincalOptions
@ -78,9 +77,7 @@ def create_test_timeseries(
start_date = datetime.datetime(2017, 1, 1)
timedelta_dict = {
frequency.freq_type: int(
frequency.value * num * (7 / 5 if frequency == AllFrequencies.D and skip_weekends else 1)
)
frequency.freq_type: int(frequency.value * num * (7 / 5 if frequency == "D" and skip_weekends else 1))
}
end_date = start_date + relativedelta(**timedelta_dict)
dates = create_date_series(start_date, end_date, frequency.symbol, skip_weekends=skip_weekends)
@ -91,7 +88,7 @@ def create_test_timeseries(
class TestReturns:
def test_returns_calc(self):
ts = create_test_timeseries(AllFrequencies.D, skip_weekends=True)
ts = create_test_timeseries()
returns = ts.calculate_returns(
"2020-01-01", annual_compounded_returns=False, return_period_unit="years", return_period_value=1
)
@ -123,7 +120,7 @@ class TestReturns:
ts.calculate_returns("2020-04-04", return_period_unit="months", return_period_value=3, prior_match="exact")
def test_date_formats(self):
ts = create_test_timeseries(AllFrequencies.D, skip_weekends=True)
ts = create_test_timeseries()
FincalOptions.date_format = "%d-%m-%Y"
with pytest.raises(ValueError):
ts.calculate_returns(
@ -150,7 +147,7 @@ class TestReturns:
def test_limits(self):
FincalOptions.date_format = "%Y-%m-%d"
ts = create_test_timeseries(AllFrequencies.D)
ts = create_test_timeseries()
with pytest.raises(DateNotFoundError):
ts.calculate_returns("2020-11-25", return_period_unit="days", return_period_value=90, closest_max_days=10)
@ -180,31 +177,3 @@ class TestVolatility:
annualize_volatility=False,
)
assert round(sd, 6) == 0.020547
class TestDrawdown:
def test_daily_ts(self):
ts = create_test_timeseries(AllFrequencies.D, skip_weekends=True)
mdd = ts.max_drawdown()
assert isinstance(mdd, dict)
assert len(mdd) == 3
assert all(i in mdd for i in ["start_date", "end_date", "drawdown"])
expeced_response = {
"start_date": datetime.datetime(2017, 6, 6, 0, 0),
"end_date": datetime.datetime(2017, 7, 31, 0, 0),
"drawdown": -0.028293686030751997,
}
assert mdd == expeced_response
def test_weekly_ts(self):
ts = create_test_timeseries(AllFrequencies.W, mu=1, sigma=0.5)
mdd = ts.max_drawdown()
assert isinstance(mdd, dict)
assert len(mdd) == 3
assert all(i in mdd for i in ["start_date", "end_date", "drawdown"])
expeced_response = {
"start_date": datetime.datetime(2019, 2, 17, 0, 0),
"end_date": datetime.datetime(2019, 11, 17, 0, 0),
"drawdown": -0.2584760499552089,
}
assert mdd == expeced_response