Compare commits
10 Commits
88e7b3994b
...
b246709603
Author | SHA1 | Date | |
---|---|---|---|
b246709603 | |||
09365c7957 | |||
7bcd310652 | |||
2ee8f928af | |||
d4bbaf7903 | |||
83a8b05802 | |||
123cc0b204 | |||
6547a5e64a | |||
22c295ece1 | |||
30749382cf |
@ -2,7 +2,7 @@
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"execution_count": 1,
|
||||
"id": "3f7938c0-98e3-43b8-86e8-4f000cda7ce5",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
@ -16,92 +16,196 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "757eafc2-f804-4e7e-a3b8-2d09cd62e646",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"dfd = pd.read_csv('test_files/nav_history_daily - copy.csv')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "59b3d4a9-8ef4-4652-9e20-1bac69ab4ff9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"dfd = dfd[dfd['amfi_code'] == 118825].reset_index(drop=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"id": "4bc95ae0-8c33-4eab-acf9-e765d22979b8",
|
||||
"execution_count": 2,
|
||||
"id": "4b8ccd5f-dfff-4202-82c4-f66a30c122b6",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Warning: The input data contains duplicate dates which have been ignored.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"ts = TimeSeries([(i.date, i.nav) for i in dfd.itertuples()], frequency='D')"
|
||||
"CPU times: user 152 ms, sys: 284 ms, total: 436 ms\n",
|
||||
"Wall time: 61.3 ms\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"id": "f2c3218c-3984-43d6-8638-41a74a9d0b58",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"TimeSeries([(datetime.datetime(2013, 1, 2, 0, 0), 18.972),\n",
|
||||
"\t (datetime.datetime(2013, 1, 3, 0, 0), 19.011),\n",
|
||||
"\t (datetime.datetime(2013, 1, 4, 0, 0), 19.008)\n",
|
||||
"\t ...\n",
|
||||
"\t (datetime.datetime(2022, 2, 10, 0, 0), 86.5),\n",
|
||||
"\t (datetime.datetime(2022, 2, 11, 0, 0), 85.226),\n",
|
||||
"\t (datetime.datetime(2022, 2, 14, 0, 0), 82.53299999999999)], frequency='D')"
|
||||
"TimeSeries([(datetime.datetime(2021, 5, 28, 0, 0), 249.679993),\n",
|
||||
"\t(datetime.datetime(2022, 1, 31, 0, 0), 310.980011)], frequency='D')"
|
||||
]
|
||||
},
|
||||
"execution_count": 20,
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"ts"
|
||||
"%%time\n",
|
||||
"dfd = pd.read_csv('test_files/msft.csv')\n",
|
||||
"# dfd = dfd[dfd['amfi_code'] == 118825].reset_index(drop=True)\n",
|
||||
"ts = TimeSeries([(i.date, i.nav) for i in dfd.itertuples()], frequency='D')\n",
|
||||
"repr(ts)\n",
|
||||
"ts[['2022-01-31', '2021-05-28']]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"id": "dc469722-c816-4b57-8d91-7a3b865f86be",
|
||||
"execution_count": 3,
|
||||
"id": "a0232e05-27c7-4d2d-a4bc-5dcf42666983",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"ename": "TypeError",
|
||||
"evalue": "getattr(): attribute name must be string",
|
||||
"evalue": "Type List cannot be instantiated; use list() instead",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)",
|
||||
"File \u001b[1;32m<timed eval>:1\u001b[0m, in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n",
|
||||
"File \u001b[1;32mD:\\Documents\\Projects\\fincal\\fincal\\fincal.py:203\u001b[0m, in \u001b[0;36mTimeSeries.calculate_rolling_returns\u001b[1;34m(self, from_date, to_date, frequency, as_on_match, prior_match, closest, compounding, years)\u001b[0m\n\u001b[0;32m 200\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m:\n\u001b[0;32m 201\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mInvalid argument for frequency \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfrequency\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m--> 203\u001b[0m dates \u001b[38;5;241m=\u001b[39m \u001b[43mcreate_date_series\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfrom_date\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mto_date\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfrequency\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 204\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m frequency \u001b[38;5;241m==\u001b[39m AllFrequencies\u001b[38;5;241m.\u001b[39mD:\n\u001b[0;32m 205\u001b[0m dates \u001b[38;5;241m=\u001b[39m [i \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m dates \u001b[38;5;28;01mif\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtime_series]\n",
|
||||
"File \u001b[1;32mD:\\Documents\\Projects\\fincal\\fincal\\fincal.py:16\u001b[0m, in \u001b[0;36mcreate_date_series\u001b[1;34m(start_date, end_date, frequency, eomonth)\u001b[0m\n\u001b[0;32m 11\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcreate_date_series\u001b[39m(\n\u001b[0;32m 12\u001b[0m start_date: datetime\u001b[38;5;241m.\u001b[39mdatetime, end_date: datetime\u001b[38;5;241m.\u001b[39mdatetime, frequency: \u001b[38;5;28mstr\u001b[39m, eomonth: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[0;32m 13\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m List[datetime\u001b[38;5;241m.\u001b[39mdatetime]:\n\u001b[0;32m 14\u001b[0m \u001b[38;5;124;03m\"\"\"Creates a date series using a frequency\"\"\"\u001b[39;00m\n\u001b[1;32m---> 16\u001b[0m frequency \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mgetattr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mAllFrequencies\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfrequency\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 17\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m eomonth \u001b[38;5;129;01mand\u001b[39;00m frequency\u001b[38;5;241m.\u001b[39mdays \u001b[38;5;241m<\u001b[39m AllFrequencies\u001b[38;5;241m.\u001b[39mM\u001b[38;5;241m.\u001b[39mdays:\n\u001b[0;32m 18\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124meomonth cannot be set to True if frequency is higher than \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mAllFrequencies\u001b[38;5;241m.\u001b[39mM\u001b[38;5;241m.\u001b[39mname\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n",
|
||||
"\u001b[1;31mTypeError\u001b[0m: getattr(): attribute name must be string"
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
|
||||
"Input \u001b[0;32mIn [3]\u001b[0m, in \u001b[0;36m<cell line: 7>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mfincal\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcore\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Frequency\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtyping\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m List, Tuple\n\u001b[1;32m 5\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcreate_test_data\u001b[39m(\n\u001b[1;32m 6\u001b[0m frequency: Frequency,\n\u001b[1;32m 7\u001b[0m num: \u001b[38;5;28mint\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1000\u001b[39m,\n\u001b[1;32m 8\u001b[0m skip_weekends: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m,\n\u001b[1;32m 9\u001b[0m mu: \u001b[38;5;28mfloat\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0.1\u001b[39m,\n\u001b[1;32m 10\u001b[0m sigma: \u001b[38;5;28mfloat\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0.05\u001b[39m,\n\u001b[1;32m 11\u001b[0m eomonth: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m,\n\u001b[0;32m---> 12\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[43mList\u001b[49m\u001b[43m(\u001b[49m\u001b[43mTuple\u001b[49m\u001b[43m)\u001b[49m:\n\u001b[1;32m 13\u001b[0m \u001b[38;5;124;03m\"\"\"Creates TimeSeries data\u001b[39;00m\n\u001b[1;32m 14\u001b[0m \n\u001b[1;32m 15\u001b[0m \u001b[38;5;124;03m Parameters:\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 35\u001b[0m \u001b[38;5;124;03m Returns a TimeSeries object\u001b[39;00m\n\u001b[1;32m 36\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m 38\u001b[0m start_date \u001b[38;5;241m=\u001b[39m datetime\u001b[38;5;241m.\u001b[39mdatetime(\u001b[38;5;241m2017\u001b[39m, \u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m1\u001b[39m)\n",
|
||||
"File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/typing.py:941\u001b[0m, in \u001b[0;36m_BaseGenericAlias.__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 939\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__call__\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 940\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_inst:\n\u001b[0;32m--> 941\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mType \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m cannot be instantiated; \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 942\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124muse \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m__origin__\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m() instead\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 943\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m__origin__(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 944\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n",
|
||||
"\u001b[0;31mTypeError\u001b[0m: Type List cannot be instantiated; use list() instead"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from fincal.fincal import create_date_series\n",
|
||||
"from fincal.core import Frequency\n",
|
||||
"from typing import List, Tuple\n",
|
||||
"\n",
|
||||
"def create_test_data(\n",
|
||||
" frequency: Frequency,\n",
|
||||
" num: int = 1000,\n",
|
||||
" skip_weekends: bool = False,\n",
|
||||
" mu: float = 0.1,\n",
|
||||
" sigma: float = 0.05,\n",
|
||||
" eomonth: bool = False,\n",
|
||||
") -> List[Tuple]:\n",
|
||||
" \"\"\"Creates TimeSeries data\n",
|
||||
"\n",
|
||||
" Parameters:\n",
|
||||
" -----------\n",
|
||||
" frequency: Frequency\n",
|
||||
" The frequency of the time series data to be generated.\n",
|
||||
"\n",
|
||||
" num: int\n",
|
||||
" Number of date: value pairs to be generated.\n",
|
||||
"\n",
|
||||
" skip_weekends: bool\n",
|
||||
" Whether weekends (saturday, sunday) should be skipped.\n",
|
||||
" Gets used only if the frequency is daily.\n",
|
||||
"\n",
|
||||
" mu: float\n",
|
||||
" Mean return for the values.\n",
|
||||
"\n",
|
||||
" sigma: float\n",
|
||||
" standard deviation of the values.\n",
|
||||
"\n",
|
||||
" Returns:\n",
|
||||
" --------\n",
|
||||
" Returns a TimeSeries object\n",
|
||||
" \"\"\"\n",
|
||||
"\n",
|
||||
" start_date = datetime.datetime(2017, 1, 1)\n",
|
||||
" timedelta_dict = {\n",
|
||||
" frequency.freq_type: int(\n",
|
||||
" frequency.value * num * (7 / 5 if frequency == AllFrequencies.D and skip_weekends else 1)\n",
|
||||
" )\n",
|
||||
" }\n",
|
||||
" end_date = start_date + relativedelta(**timedelta_dict)\n",
|
||||
" dates = create_date_series(start_date, end_date, frequency.symbol, skip_weekends=skip_weekends, eomonth=eomonth)\n",
|
||||
" values = create_prices(1000, mu, sigma, num)\n",
|
||||
" ts = list(zip(dates, values))\n",
|
||||
" return ts"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "53dbc8a6-d7b1-4d82-ac3d-ee3908ff086d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "aa1584d5-1df0-4661-aeeb-5e8c424de06d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fincal import fincal\n",
|
||||
"from fincal.core import FincalOptions\n",
|
||||
"import csv"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "7d51fca1-f731-47c8-99c9-6e199cfeca92",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"['date', 'nav']\n",
|
||||
"CPU times: user 47.7 ms, sys: 3.16 ms, total: 50.9 ms\n",
|
||||
"Wall time: 50.3 ms\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"TimeSeries([(datetime.datetime(1992, 2, 19, 0, 0), '2.398438'),\n",
|
||||
"\t (datetime.datetime(1992, 2, 20, 0, 0), '2.447917'),\n",
|
||||
"\t (datetime.datetime(1992, 2, 21, 0, 0), '2.385417')\n",
|
||||
"\t ...\n",
|
||||
"\t (datetime.datetime(2022, 2, 16, 0, 0), '299.5'),\n",
|
||||
"\t (datetime.datetime(2022, 2, 17, 0, 0), '290.730011'),\n",
|
||||
"\t (datetime.datetime(2022, 2, 18, 0, 0), '287.929993')], frequency='M')"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"FincalOptions.date_format = '%Y-%m-%d'\n",
|
||||
"fincal.read_csv('test_files/msft.csv', frequency='M')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "b689f64c-6764-45b5-bccf-f23b351f6419",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "6c9b2dd7-9983-40cd-8ac4-3530a3892f17",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"CPU times: user 61.4 ms, sys: 2.35 ms, total: 63.7 ms\n",
|
||||
"Wall time: 62.6 ms\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"ts.calculate_rolling_returns(from_date='2020-01-01', to_date='2021-01-01')"
|
||||
"dfd = pd.read_csv(\"test_files/msft.csv\")\n",
|
||||
"ts = fincal.TimeSeries([(i.date, i.nav) for i in dfd.itertuples()], frequency=\"D\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
@ -121,7 +225,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.3"
|
||||
"version": "3.10.2"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@ -1 +1,3 @@
|
||||
from fincal import *
|
||||
from .core import *
|
||||
from .fincal import *
|
||||
from .utils import *
|
||||
|
@ -2,7 +2,8 @@ from __future__ import annotations
|
||||
|
||||
import datetime
|
||||
import inspect
|
||||
from collections import UserDict, UserList
|
||||
import warnings
|
||||
from collections import UserList
|
||||
from dataclasses import dataclass
|
||||
from numbers import Number
|
||||
from typing import Callable, Iterable, List, Literal, Mapping, Sequence, Type
|
||||
@ -99,6 +100,11 @@ class _IndexSlicer:
|
||||
|
||||
return self.parent.__class__(item, self.parent.frequency.symbol)
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
raise NotImplementedError(
|
||||
"iloc cannot be used for setting a value as value will always be inserted in order of date"
|
||||
)
|
||||
|
||||
|
||||
class Series(UserList):
|
||||
"""Container for a series of objects, all objects must be of the same type"""
|
||||
@ -150,7 +156,13 @@ class Series(UserList):
|
||||
if isinstance(other, (str, datetime.datetime, datetime.date)):
|
||||
other = _parse_date(other)
|
||||
|
||||
if self.dtype == float and isinstance(other, Number) or isinstance(other, self.dtype):
|
||||
if isinstance(other, Series):
|
||||
if len(self) != len(other):
|
||||
raise ValueError("Length of Series must be same for comparison")
|
||||
|
||||
gt = Series([j > other[i] for i, j in enumerate(self)], "bool")
|
||||
|
||||
elif self.dtype == float and isinstance(other, Number) or isinstance(other, self.dtype):
|
||||
gt = Series([i > other for i in self.data], "bool")
|
||||
else:
|
||||
raise Exception(f"Cannot compare type {self.dtype.__name__} to {type(other).__name__}")
|
||||
@ -164,7 +176,13 @@ class Series(UserList):
|
||||
if isinstance(other, (str, datetime.datetime, datetime.date)):
|
||||
other = _parse_date(other)
|
||||
|
||||
if self.dtype == float and isinstance(other, Number) or isinstance(other, self.dtype):
|
||||
if isinstance(other, Series):
|
||||
if len(self) != len(other):
|
||||
raise ValueError("Length of Series must be same for comparison")
|
||||
|
||||
ge = Series([j >= other[i] for i, j in enumerate(self)], "bool")
|
||||
|
||||
elif self.dtype == float and isinstance(other, Number) or isinstance(other, self.dtype):
|
||||
ge = Series([i >= other for i in self.data], "bool")
|
||||
else:
|
||||
raise Exception(f"Cannot compare type {self.dtype.__name__} to {type(other).__name__}")
|
||||
@ -178,7 +196,13 @@ class Series(UserList):
|
||||
if isinstance(other, (str, datetime.datetime, datetime.date)):
|
||||
other = _parse_date(other)
|
||||
|
||||
if self.dtype == float and isinstance(other, Number) or isinstance(other, self.dtype):
|
||||
if isinstance(other, Series):
|
||||
if len(self) != len(other):
|
||||
raise ValueError("Length of Series must be same for comparison")
|
||||
|
||||
lt = Series([j < other[i] for i, j in enumerate(self)], "bool")
|
||||
|
||||
elif self.dtype == float and isinstance(other, Number) or isinstance(other, self.dtype):
|
||||
lt = Series([i < other for i in self.data], "bool")
|
||||
else:
|
||||
raise Exception(f"Cannot compare type {self.dtype.__name__} to {type(other).__name__}")
|
||||
@ -191,7 +215,13 @@ class Series(UserList):
|
||||
if isinstance(other, (str, datetime.datetime, datetime.date)):
|
||||
other = _parse_date(other)
|
||||
|
||||
if self.dtype == float and isinstance(other, Number) or isinstance(other, self.dtype):
|
||||
if isinstance(other, Series):
|
||||
if len(self) != len(other):
|
||||
raise ValueError("Length of Series must be same for comparison")
|
||||
|
||||
le = Series([j <= other[i] for i, j in enumerate(self)], "bool")
|
||||
|
||||
elif self.dtype == float and isinstance(other, Number) or isinstance(other, self.dtype):
|
||||
le = Series([i <= other for i in self.data], "bool")
|
||||
else:
|
||||
raise Exception(f"Cannot compare type {self.dtype.__name__} to {type(other).__name__}")
|
||||
@ -201,14 +231,21 @@ class Series(UserList):
|
||||
if isinstance(other, (str, datetime.datetime, datetime.date)):
|
||||
other = _parse_date(other)
|
||||
|
||||
if self.dtype == float and isinstance(other, Number) or isinstance(other, self.dtype):
|
||||
if isinstance(other, Series):
|
||||
if len(self) != len(other):
|
||||
raise ValueError("Length of Series must be same for comparison")
|
||||
|
||||
eq = Series([j == other[i] for i, j in enumerate(self)], "bool")
|
||||
|
||||
elif self.dtype == float and isinstance(other, Number) or isinstance(other, self.dtype):
|
||||
eq = Series([i == other for i in self.data], "bool")
|
||||
else:
|
||||
raise Exception(f"Cannot compare type {self.dtype.__name__} to {type(other).__name__}")
|
||||
return eq
|
||||
|
||||
|
||||
class TimeSeriesCore(UserDict):
|
||||
@Mapping.register
|
||||
class TimeSeriesCore:
|
||||
"""Defines the core building blocks of a TimeSeries object"""
|
||||
|
||||
def __init__(
|
||||
@ -237,9 +274,9 @@ class TimeSeriesCore(UserDict):
|
||||
|
||||
ts_data = _preprocess_timeseries(ts_data, date_format=date_format)
|
||||
|
||||
super().__init__(dict(ts_data))
|
||||
self.data = dict(ts_data)
|
||||
if len(self.data) != len(ts_data):
|
||||
print("Warning: The input data contains duplicate dates which have been ignored.")
|
||||
warnings.warn("The input data contains duplicate dates which have been ignored.")
|
||||
self.frequency: Frequency = getattr(AllFrequencies, frequency)
|
||||
self.iter_num: int = -1
|
||||
self._dates: list = None
|
||||
@ -364,6 +401,41 @@ class TimeSeriesCore(UserDict):
|
||||
|
||||
raise TypeError(f"Invalid type {repr(type(key).__name__)} for slicing.")
|
||||
|
||||
def __gt__(self, other):
|
||||
if isinstance(other, Number):
|
||||
data = {k: v > other for k, v in self.data.items()}
|
||||
|
||||
if isinstance(other, TimeSeriesCore):
|
||||
if self.dates != other.dates:
|
||||
raise ValueError(
|
||||
"Only objects with same set of dates can be compared.\n"
|
||||
"Hint: use TimeSeries.sync() method to sync dates of two TimeSeries objects."
|
||||
)
|
||||
|
||||
data = {dt: val > other[dt][1] for dt, val in self.data.items()}
|
||||
|
||||
if isinstance(other, Series):
|
||||
if Series.dtype != float:
|
||||
raise TypeError("Only Series of type float can be used for comparison")
|
||||
|
||||
if len(self) != len(other):
|
||||
raise ValueError("Length of series does not match length of object")
|
||||
|
||||
data = {dt: val > other[i] for i, (dt, val) in enumerate(self.data.items())}
|
||||
|
||||
return self.__class__(data, frequency=self.frequency.symbol)
|
||||
|
||||
@date_parser(1)
|
||||
def __setitem__(self, key: str | datetime.datetime, value: Number) -> None:
|
||||
if not isinstance(value, Number):
|
||||
raise TypeError("Only numerical values can be stored in TimeSeries")
|
||||
|
||||
if key in self.data:
|
||||
self.data[key] = value
|
||||
else:
|
||||
self.data.update({key: value})
|
||||
self.data = dict(sorted(self.data.items()))
|
||||
|
||||
def __iter__(self):
|
||||
self.n = 0
|
||||
return self
|
||||
@ -376,9 +448,12 @@ class TimeSeriesCore(UserDict):
|
||||
self.n += 1
|
||||
return key, self.data[key]
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
@date_parser(1)
|
||||
def __contains__(self, key: object) -> bool:
|
||||
return super().__contains__(key)
|
||||
return key in self.data
|
||||
|
||||
@date_parser(1)
|
||||
def get(self, date: str | datetime.datetime, default=None, closest=None):
|
||||
|
118
fincal/fincal.py
118
fincal/fincal.py
@ -476,7 +476,7 @@ class TimeSeries(TimeSeriesCore):
|
||||
ValueError: If frequency string is outside valid values
|
||||
|
||||
Also see:
|
||||
--------
|
||||
---------
|
||||
TimeSeries.calculate_rolling_returns()
|
||||
"""
|
||||
|
||||
@ -583,7 +583,38 @@ class TimeSeries(TimeSeriesCore):
|
||||
to_frequency: Literal["D", "W", "M", "Q", "H"],
|
||||
method: Literal["ffill", "bfill"],
|
||||
skip_weekends: bool = False,
|
||||
eomonth: bool = False,
|
||||
) -> TimeSeries:
|
||||
"""Expand a time series to a higher frequency.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
to_frequency : "D", "W", "M", "Q", "H"
|
||||
Frequency to which the TimeSeries will be expanded.
|
||||
Must be higher than the current frequency of the TimeSeries.
|
||||
|
||||
method : ffill | bfill
|
||||
Method to be used to fill missing values.
|
||||
|
||||
skip_weekends : bool, optional
|
||||
Whether weekends should be skipped while expanding to daily.
|
||||
Will be used only if to_frequency is D
|
||||
|
||||
eomonth: bool, optional
|
||||
Whether dates should be end of month dates when frequency is monthly or lower.
|
||||
Will be used only if to_frequency is M, Q, or H
|
||||
|
||||
Returns
|
||||
-------
|
||||
TimeSeries
|
||||
Returns an object of TimeSeries class
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
* If Frequency cannot be recognised
|
||||
* If to_frequency is same or lower than the current frequency
|
||||
"""
|
||||
try:
|
||||
to_frequency: Frequency = getattr(AllFrequencies, to_frequency)
|
||||
except AttributeError:
|
||||
@ -597,6 +628,7 @@ class TimeSeries(TimeSeriesCore):
|
||||
self.end_date,
|
||||
frequency=to_frequency.symbol,
|
||||
skip_weekends=skip_weekends,
|
||||
eomonth=eomonth,
|
||||
ensure_coverage=True,
|
||||
)
|
||||
|
||||
@ -606,12 +638,88 @@ class TimeSeries(TimeSeriesCore):
|
||||
|
||||
return output_ts
|
||||
|
||||
def sync(self, other: TimeSeries, fill_method: Literal["ffill", "bfill"] = "ffill"):
|
||||
def shrink(
|
||||
self,
|
||||
to_frequency: Literal["W", "M", "Q", "H", "Y"],
|
||||
method: Literal["ffill", "bfill"],
|
||||
skip_weekends: bool = False,
|
||||
eomonth: bool = False,
|
||||
) -> TimeSeries:
|
||||
"""Shrink a time series to a lower frequency.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
to_frequency : "W", "M", "Q", "H", "Y"
|
||||
Frequency to which the TimeSeries will be shrunk.
|
||||
Must be lower than the current frequency of the TimeSeries.
|
||||
|
||||
method : ffill | bfill
|
||||
Method to be used to fill missing values.
|
||||
|
||||
skip_weekends : bool, optional
|
||||
Whether weekends should be skipped while shrinking to daily.
|
||||
Will be used only if to_frequency is D
|
||||
|
||||
eomonth: bool, optional
|
||||
Whether dates should be end of month dates when frequency is monthly or lower.
|
||||
Will be used only if to_frequency is M, Q, H, or Y
|
||||
|
||||
Returns
|
||||
-------
|
||||
TimeSeries
|
||||
Returns an object of TimeSeries class
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
* If Frequency cannot be recognised
|
||||
* If to_frequency is same or higher than the current frequency
|
||||
"""
|
||||
try:
|
||||
to_frequency: Frequency = getattr(AllFrequencies, to_frequency)
|
||||
except AttributeError:
|
||||
raise ValueError(f"Invalid argument for to_frequency {to_frequency}")
|
||||
|
||||
if to_frequency.days <= self.frequency.days:
|
||||
raise ValueError("TimeSeries can be only shrunk to a lower frequency")
|
||||
|
||||
new_dates = create_date_series(
|
||||
self.start_date,
|
||||
self.end_date,
|
||||
frequency=to_frequency.symbol,
|
||||
skip_weekends=skip_weekends,
|
||||
eomonth=eomonth,
|
||||
ensure_coverage=True,
|
||||
)
|
||||
|
||||
closest: str = "previous" if method == "ffill" else "next"
|
||||
new_ts: dict = {dt: self.get(dt, closest=closest)[1] for dt in new_dates}
|
||||
output_ts: TimeSeries = TimeSeries(new_ts, frequency=to_frequency.symbol)
|
||||
|
||||
return output_ts
|
||||
|
||||
def sync(self, other: TimeSeries, fill_method: Literal["ffill", "bfill"] = "ffill") -> TimeSeries:
|
||||
"""Synchronize two TimeSeries objects
|
||||
|
||||
This will ensure that both time series have the same frequency and same set of dates.
|
||||
The frequency will be set to the higher of the two objects.
|
||||
Dates will be taken from the class on which the method is called.
|
||||
|
||||
Parameters:
|
||||
-----------
|
||||
other: TimeSeries
|
||||
Another object of TimeSeries class whose dates need to be syncronized
|
||||
|
||||
fill_method: ffill | bfill, default ffill
|
||||
Method to use to fill missing values in time series when syncronizing
|
||||
|
||||
Returns:
|
||||
--------
|
||||
Returns another object of TimeSeries class
|
||||
|
||||
Raises:
|
||||
--------
|
||||
Raises TypeError if the other object is not of TimeSeries class
|
||||
"""
|
||||
|
||||
if not isinstance(other, TimeSeries):
|
||||
@ -620,11 +728,11 @@ class TimeSeries(TimeSeriesCore):
|
||||
if self.frequency.days < other.frequency.days:
|
||||
other = other.expand(to_frequency=self.frequency.symbol, method=fill_method)
|
||||
if self.frequency.days > other.frequency.days:
|
||||
self = self.expand(to_frequency=other.frequency.symbol, method=fill_method)
|
||||
other = other.shrink(to_frequency=other.frequency.symbol, method=fill_method)
|
||||
|
||||
new_other = {}
|
||||
for dt in self.dates:
|
||||
new_other: dict = {}
|
||||
closest = "previous" if fill_method == "ffill" else "next"
|
||||
for dt in self.dates:
|
||||
if dt in other:
|
||||
new_other[dt] = other[dt][1]
|
||||
else:
|
||||
|
@ -13,9 +13,29 @@ class FincalOptions:
|
||||
get_closest: str = "exact"
|
||||
|
||||
|
||||
def _parse_date(date: str, date_format: str = None):
|
||||
"""Parses date and handles errors"""
|
||||
# print(date, date_format)
|
||||
def _parse_date(date: str, date_format: str = None) -> datetime.datetime:
|
||||
"""Parses date and handles errors
|
||||
|
||||
Parameters:
|
||||
-----------
|
||||
date: str | datetime.date
|
||||
The date to be parsed.
|
||||
If the date passed is already a datetime object, it will return it unprocessed.
|
||||
|
||||
date_format: str, default None
|
||||
The format of the date string in datetime.strftime friendly format.
|
||||
If format is None, format in FincalOptions.date_format will be used.
|
||||
|
||||
Returns:
|
||||
--------
|
||||
Returns a datetime.datetime object.
|
||||
|
||||
Raises:
|
||||
-------
|
||||
TypeError: If the is not a date-like string
|
||||
ValueError: If the date could not be parsed with the given format
|
||||
"""
|
||||
|
||||
if isinstance(date, (datetime.datetime, datetime.date)):
|
||||
return datetime.datetime.fromordinal(date.toordinal())
|
||||
|
||||
@ -37,18 +57,53 @@ def _preprocess_timeseries(
|
||||
| Mapping[str | datetime.datetime, float],
|
||||
date_format: str,
|
||||
) -> List[Tuple[datetime.datetime, float]]:
|
||||
"""Converts any type of list to the correct type"""
|
||||
"""Converts any type of list to the TimeSeries friendly format.
|
||||
This function is internally called by the __init__ function of the TimeSeriesCore class
|
||||
|
||||
The TimeSeries class can internally process a list of Tuples.
|
||||
However, users have the option of passing a variety of types.
|
||||
This function preprocesses the data and converts it into the relevant format.
|
||||
|
||||
If the data is a dictionary, it will be converted using .items() iteration.
|
||||
If the data is not a dictionary or a list, it will raise an error.
|
||||
If the data is of list type:
|
||||
* If the first item is also of list type, it will be parsed as a list of lists
|
||||
* If the first item is a dictionary with one key, then key will be parsed as date
|
||||
* If the first item is a dictionary with two keys, then first key will be date and second will be value
|
||||
* If the first element is of another type, it will raise an error
|
||||
|
||||
The final return value is sorted by date
|
||||
|
||||
Parameters:
|
||||
-----------
|
||||
Data:
|
||||
The data for the time series. Can be a dictionary, a list of tuples, or a list of dictionaries.
|
||||
|
||||
date_format: str
|
||||
The format of the date in strftime friendly format.
|
||||
|
||||
Returns:
|
||||
-----------
|
||||
Returns a list of Tuples where the first element of each tuple is of datetime.datetime class
|
||||
and the second element is of float class
|
||||
|
||||
Raises:
|
||||
--------
|
||||
TypeError: If the data is not in a format which can be parsed.
|
||||
"""
|
||||
|
||||
if isinstance(data, Mapping):
|
||||
current_data: List[tuple] = [(k, v) for k, v in data.items()]
|
||||
return _preprocess_timeseries(current_data, date_format)
|
||||
|
||||
# If data is not a dictionary or list, it cannot be parsed
|
||||
if not isinstance(data, Sequence):
|
||||
raise TypeError("Could not parse the data")
|
||||
|
||||
if isinstance(data[0], Sequence):
|
||||
return sorted([(_parse_date(i, date_format), j) for i, j in data])
|
||||
return sorted([(_parse_date(i, date_format), float(j)) for i, j in data])
|
||||
|
||||
# If first element is not a dictionary or tuple, it cannot be parsed
|
||||
if not isinstance(data[0], Mapping):
|
||||
raise TypeError("Could not parse the data")
|
||||
|
||||
|
54
test.py
54
test.py
@ -1,35 +1,29 @@
|
||||
# type: ignore
|
||||
|
||||
import datetime
|
||||
import time
|
||||
|
||||
import pandas as pd
|
||||
|
||||
# from fincal.core import FincalOptions
|
||||
from fincal.fincal import TimeSeries
|
||||
|
||||
df = pd.read_csv('test_files/nav_history_daily.csv')
|
||||
df = df.sort_values(by=['amfi_code', 'date']) # type: ignore
|
||||
data_list = [(i.date, i.nav) for i in df[df.amfi_code == 118825].itertuples()]
|
||||
data = [
|
||||
("2022-01-01", 10),
|
||||
("2022-01-02", 12),
|
||||
("2022-01-03", 14),
|
||||
("2022-01-04", 16),
|
||||
("2022-01-06", 18),
|
||||
("2022-01-07", 20),
|
||||
("2022-01-09", 22),
|
||||
("2022-01-10", 24),
|
||||
("2022-01-11", 26),
|
||||
("2022-01-13", 28),
|
||||
("2022-01-14", 30),
|
||||
("2022-01-15", 32),
|
||||
("2022-01-16", 34),
|
||||
]
|
||||
ts = TimeSeries(data, frequency="D")
|
||||
print(ts)
|
||||
|
||||
start = time.time()
|
||||
ts_data = TimeSeries(data_list, frequency='M')
|
||||
print(f"Instantiation took {round((time.time() - start)*1000, 2)} ms")
|
||||
# ts_data.fill_missing_days()
|
||||
start = time.time()
|
||||
# ts_data.calculate_returns(as_on=datetime.datetime(2022, 1, 4), closest='next', years=1)
|
||||
rr = ts_data.calculate_rolling_returns(datetime.datetime(2015, 1, 1),
|
||||
datetime.datetime(2022, 1, 21),
|
||||
frequency='M',
|
||||
as_on_match='next',
|
||||
prior_match='previous',
|
||||
closest='previous',
|
||||
years=1)
|
||||
data = [("2022-01-01", 220), ("2022-01-08", 230), ("2022-01-15", 240)]
|
||||
ts2 = TimeSeries(data, frequency="W")
|
||||
print(ts2)
|
||||
|
||||
# ffill_data = ts_data.bfill()
|
||||
print(f"Calculation took {round((time.time() - start)*1000, 2)} ms")
|
||||
rr.sort()
|
||||
for i in rr[:10]:
|
||||
synced_ts = ts.sync(ts2)
|
||||
print("---------\n")
|
||||
for i in synced_ts:
|
||||
print(i)
|
||||
# print(ffill_data)
|
||||
# print(ts_data)
|
||||
# print(repr(ts_data))
|
||||
|
90
test2.py
90
test2.py
@ -1,58 +1,52 @@
|
||||
import pandas as pd
|
||||
import time
|
||||
|
||||
from fincal.fincal import TimeSeries, create_date_series
|
||||
from fincal.fincal import TimeSeries
|
||||
|
||||
dfd = pd.read_csv("test_files/nav_history_daily - Copy.csv")
|
||||
dfd = dfd[dfd["amfi_code"] == 118825].reset_index(drop=True)
|
||||
ts = TimeSeries([(i.date, i.nav) for i in dfd.itertuples()], frequency="D")
|
||||
repr(ts)
|
||||
# print(ts[['2022-01-31', '2021-05-28']])
|
||||
# start = time.time()
|
||||
# dfd = pd.read_csv("test_files/msft.csv") # , dtype=dict(nav=str))
|
||||
# # dfd = dfd[dfd["amfi_code"] == 118825].reset_index(drop=True)
|
||||
# print("instantiation took", round((time.time() - start) * 1000, 2), "ms")
|
||||
# ts = TimeSeries([(i.date, i.nav) for i in dfd.itertuples()], frequency="D")
|
||||
# print(repr(ts))
|
||||
|
||||
# rr = ts.calculate_rolling_returns(from_date='2021-01-01', to_date='2022-01-01', frequency='D', interval_type='days', interval_value=30, compounding=False)
|
||||
start = time.time()
|
||||
# mdd = ts.max_drawdown()
|
||||
# print(mdd)
|
||||
# print("max drawdown calc took", round((time.time() - start) * 1000, 2), "ms")
|
||||
# # print(ts[['2022-01-31', '2021-05-28']])
|
||||
|
||||
|
||||
# data = [
|
||||
# ("2020-01-01", 10),
|
||||
# ("2020-02-01", 12),
|
||||
# ("2020-03-01", 14),
|
||||
# ("2020-04-01", 16),
|
||||
# ("2020-05-01", 18),
|
||||
# ("2020-06-01", 20),
|
||||
# ("2020-07-01", 22),
|
||||
# ("2020-08-01", 24),
|
||||
# ("2020-09-01", 26),
|
||||
# ("2020-10-01", 28),
|
||||
# ("2020-11-01", 30),
|
||||
# ("2020-12-01", 32),
|
||||
# ("2021-01-01", 34),
|
||||
# ]
|
||||
|
||||
# ts = TimeSeries(data, frequency="M")
|
||||
# rr = ts.calculate_rolling_returns(
|
||||
# "2020-02-01",
|
||||
# "2021-01-01",
|
||||
# if_not_found="nan",
|
||||
# compounding=False,
|
||||
# interval_type="months",
|
||||
# interval_value=1,
|
||||
# as_on_match="exact",
|
||||
# from_date='2021-01-01',
|
||||
# to_date='2022-01-01',
|
||||
# frequency='D',
|
||||
# interval_type='days',
|
||||
# interval_value=30,
|
||||
# compounding=False
|
||||
# )
|
||||
|
||||
# for i in rr:
|
||||
|
||||
data = [
|
||||
("2022-01-01", 10),
|
||||
# ("2022-01-08", 12),
|
||||
("2022-01-15", 14),
|
||||
("2022-01-22", 16)
|
||||
# ("2020-02-07", 18),
|
||||
# ("2020-02-14", 20),
|
||||
# ("2020-02-21", 22),
|
||||
# ("2020-02-28", 24),
|
||||
# ("2020-03-01", 26),
|
||||
# ("2020-03-01", 28),
|
||||
# ("2020-03-01", 30),
|
||||
# ("2020-03-01", 32),
|
||||
# ("2021-03-01", 34),
|
||||
]
|
||||
|
||||
ts = TimeSeries(data, "W")
|
||||
# ts_expanded = ts.expand("D", "ffill", skip_weekends=True)
|
||||
|
||||
# for i in ts_expanded:
|
||||
# print(i)
|
||||
|
||||
# returns = ts.calculate_returns(
|
||||
# "2020-04-25",
|
||||
# return_actual_date=True,
|
||||
# closest_max_days=15,
|
||||
# compounding=True,
|
||||
# interval_type="days",
|
||||
# interval_value=90,
|
||||
# closest="previous",
|
||||
# if_not_found="fail",
|
||||
# )
|
||||
print(ts.get("2022-01-01"))
|
||||
|
||||
# print(returns)
|
||||
|
||||
volatility = ts.volatility(start_date="2018-01-01", end_date="2021-01-01")
|
||||
print(volatility)
|
||||
print(ts.ffill())
|
||||
|
7560
test_files/.ipynb_checkpoints/msft-checkpoint.csv
Normal file
7560
test_files/.ipynb_checkpoints/msft-checkpoint.csv
Normal file
File diff suppressed because it is too large
Load Diff
139
test_files/.ipynb_checkpoints/nav_history_daily-checkpoint.csv
Normal file
139
test_files/.ipynb_checkpoints/nav_history_daily-checkpoint.csv
Normal file
@ -0,0 +1,139 @@
|
||||
amfi_code,date,nav
|
||||
118825,01-11-2021,87.925
|
||||
119528,02-11-2021,378.51
|
||||
118825,02-11-2021,87.885
|
||||
119528,03-11-2021,377.79
|
||||
118825,03-11-2021,87.553
|
||||
119528,08-11-2021,383.13
|
||||
118825,08-11-2021,88.743
|
||||
119528,09-11-2021,383.06
|
||||
118825,09-11-2021,88.793
|
||||
119528,10-11-2021,382.71
|
||||
118825,10-11-2021,88.723
|
||||
118825,10-11-2021,88.78
|
||||
119528,11-11-2021,379.28
|
||||
118825,11-11-2021,88.205
|
||||
119528,12-11-2021,383.94
|
||||
118825,12-11-2021,89.025
|
||||
119528,15-11-2021,383.31
|
||||
118825,15-11-2021,89.182
|
||||
119528,16-11-2021,381.08
|
||||
118825,16-11-2021,88.569
|
||||
119528,17-11-2021,379.17
|
||||
118825,17-11-2021,88.09
|
||||
119528,18-11-2021,375.09
|
||||
118825,18-11-2021,87.202
|
||||
119528,22-11-2021,368.16
|
||||
118825,22-11-2021,85.382
|
||||
119528,23-11-2021,370.64
|
||||
118825,23-11-2021,85.978
|
||||
119528,24-11-2021,369.91
|
||||
118825,24-11-2021,85.635
|
||||
119528,25-11-2021,371.33
|
||||
118825,25-11-2021,86.212
|
||||
119528,26-11-2021,360.66
|
||||
118825,26-11-2021,83.748
|
||||
119528,29-11-2021,360.05
|
||||
118825,29-11-2021,83.523
|
||||
119528,30-11-2021,359.8
|
||||
118825,30-11-2021,83.475
|
||||
119528,01-12-2021,362.35
|
||||
118825,01-12-2021,84.269
|
||||
119528,02-12-2021,366.09
|
||||
118825,02-12-2021,85.105
|
||||
119528,03-12-2021,363.11
|
||||
118825,03-12-2021,84.507
|
||||
119528,06-12-2021,357.21
|
||||
118825,06-12-2021,83.113
|
||||
119528,07-12-2021,362.63
|
||||
118825,07-12-2021,84.429
|
||||
119528,08-12-2021,368.73
|
||||
118825,08-12-2021,85.935
|
||||
119528,09-12-2021,369.49
|
||||
118825,09-12-2021,86.045
|
||||
119528,10-12-2021,369.44
|
||||
118825,10-12-2021,86.058
|
||||
119528,13-12-2021,367.6
|
||||
118825,13-12-2021,85.632
|
||||
119528,14-12-2021,366.36
|
||||
118825,14-12-2021,85.502
|
||||
119528,15-12-2021,364.34
|
||||
118825,15-12-2021,84.989
|
||||
119528,16-12-2021,363.73
|
||||
118825,16-12-2021,84.972
|
||||
119528,17-12-2021,358.17
|
||||
118825,17-12-2021,83.83
|
||||
119528,20-12-2021,349.98
|
||||
118825,20-12-2021,81.817
|
||||
119528,21-12-2021,353.71
|
||||
118825,21-12-2021,82.746
|
||||
119528,22-12-2021,357.93
|
||||
118825,22-12-2021,83.776
|
||||
119528,23-12-2021,360.68
|
||||
118825,23-12-2021,84.297
|
||||
119528,24-12-2021,359.11
|
||||
118825,24-12-2021,83.903
|
||||
119528,27-12-2021,360.71
|
||||
118825,27-12-2021,84.227
|
||||
119528,28-12-2021,363.81
|
||||
118825,28-12-2021,85.044
|
||||
119528,29-12-2021,363.2
|
||||
118825,29-12-2021,85.03
|
||||
119528,30-12-2021,363.31
|
||||
118825,30-12-2021,85.047
|
||||
119528,31-12-2021,366.98
|
||||
118825,31-12-2021,85.759
|
||||
119528,03-01-2022,371.76
|
||||
118825,03-01-2022,87.111
|
||||
119528,04-01-2022,374.22
|
||||
118825,04-01-2022,87.804
|
||||
119528,05-01-2022,376.31
|
||||
118825,05-01-2022,88.162
|
||||
119528,06-01-2022,373.64
|
||||
118825,06-01-2022,87.541
|
||||
119528,07-01-2022,374.68
|
||||
118825,07-01-2022,87.818
|
||||
119528,10-01-2022,378.47
|
||||
118825,10-01-2022,88.622
|
||||
119528,11-01-2022,379.34
|
||||
118825,11-01-2022,88.678
|
||||
119528,12-01-2022,382.86
|
||||
118825,12-01-2022,89.332
|
||||
119528,13-01-2022,383.68
|
||||
118825,13-01-2022,89.553
|
||||
119528,14-01-2022,384.02
|
||||
118825,14-01-2022,89.729
|
||||
119528,17-01-2022,384.36
|
||||
118825,17-01-2022,89.733
|
||||
119528,18-01-2022,380
|
||||
118825,18-01-2022,88.781
|
||||
119528,19-01-2022,377.24
|
||||
118825,19-01-2022,88.059
|
||||
119528,20-01-2022,374.45
|
||||
118825,20-01-2022,87.361
|
||||
119528,21-01-2022,369.86
|
||||
118825,21-01-2022,86.22
|
||||
119528,24-01-2022,361.01
|
||||
118825,24-01-2022,83.907
|
||||
119528,25-01-2022,364.63
|
||||
118825,25-01-2022,84.763
|
||||
119528,27-01-2022,361.95
|
||||
118825,27-01-2022,83.876
|
||||
119528,28-01-2022,361.91
|
||||
118825,28-01-2022,83.829
|
||||
119528,31-01-2022,367.31
|
||||
118825,31-01-2022,85.18
|
||||
119528,04-02-2022,371.01
|
||||
118825,04-02-2022,86.079
|
||||
119528,07-02-2022,365.04
|
||||
118825,07-02-2022,84.867
|
||||
119528,08-02-2022,365.74
|
||||
118825,08-02-2022,84.945
|
||||
119528,09-02-2022,369.85
|
||||
118825,09-02-2022,85.977
|
||||
119528,10-02-2022,372.29
|
||||
118825,10-02-2022,86.5
|
||||
119528,11-02-2022,366.91
|
||||
118825,11-02-2022,85.226
|
||||
119528,14-02-2022,355.47
|
||||
118825,14-02-2022,82.533
|
|
@ -0,0 +1,11 @@
|
||||
amfi_code,date,nav
|
||||
118825,31-03-2021,70.69
|
||||
118825,30-04-2021,70.39
|
||||
118825,31-05-2021,74.85
|
||||
118825,30-07-2021,78.335
|
||||
118825,31-08-2021,83.691
|
||||
118825,30-09-2021,86.128
|
||||
118825,29-10-2021,86.612
|
||||
118825,30-11-2021,83.475
|
||||
118825,31-01-2022,85.18
|
||||
118825,17-02-2022,84.33
|
|
@ -1,3 +1,7 @@
|
||||
|
||||
|
||||
|
||||
|
||||
amfi_code,date,nav
|
||||
118825,31-03-2021,70.69
|
||||
118825,30-04-2021,70.39
|
||||
|
|
515
testing.ipynb
515
testing.ipynb
@ -3,36 +3,23 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "3f7938c0-98e3-43b8-86e8-4f000cda7ce5",
|
||||
"id": "e1ecfa55",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import datetime\n",
|
||||
"import pandas as pd\n",
|
||||
"\n",
|
||||
"from fincal.fincal import TimeSeries\n",
|
||||
"from fincal.core import Series"
|
||||
"import fincal as fc"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "4b8ccd5f-dfff-4202-82c4-f66a30c122b6",
|
||||
"id": "ccac3896",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"CPU times: total: 125 ms\n",
|
||||
"Wall time: 99 ms\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[(datetime.datetime(2022, 1, 31, 0, 0), 310.980011),\n",
|
||||
" (datetime.datetime(2021, 5, 28, 0, 0), 249.67999300000002)]"
|
||||
"fincal.fincal.TimeSeries"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
@ -41,207 +28,45 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"dfd = pd.read_csv('test_files/msft.csv')\n",
|
||||
"# dfd = dfd[dfd['amfi_code'] == 118825].reset_index(drop=True)\n",
|
||||
"ts = TimeSeries([(i.date, i.nav) for i in dfd.itertuples()], frequency='D')\n",
|
||||
"repr(ts)\n",
|
||||
"ts[['2022-01-31', '2021-05-28']]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "ffd9665d",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(datetime.datetime(2022, 1, 31, 0, 0), 310.980011)"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"ts['2022-01-31']"
|
||||
"fc.TimeSeries"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "086d4377-d1b1-4e51-84c0-39dee28ef75e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"CPU times: total: 15.6 ms\n",
|
||||
"Wall time: 16 ms\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"TimeSeries([(datetime.datetime(2022, 1, 3, 0, 0), 334.75),\n",
|
||||
"\t (datetime.datetime(2022, 1, 4, 0, 0), 329.01001),\n",
|
||||
"\t (datetime.datetime(2022, 1, 5, 0, 0), 316.380005)\n",
|
||||
"\t ...\n",
|
||||
"\t (datetime.datetime(2022, 2, 16, 0, 0), 299.5),\n",
|
||||
"\t (datetime.datetime(2022, 2, 17, 0, 0), 290.730011),\n",
|
||||
"\t (datetime.datetime(2022, 2, 18, 0, 0), 287.929993)], frequency='D')"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"s = ts.dates >= '2022-01-01'\n",
|
||||
"ts[s]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "e815edc9-3746-4192-814e-bd27b2771a0c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"CPU times: total: 15.6 ms\n",
|
||||
"Wall time: 4 ms\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[(datetime.datetime(1992, 2, 19, 0, 0), 2.398438),\n",
|
||||
" (datetime.datetime(1992, 2, 20, 0, 0), 2.447917),\n",
|
||||
" (datetime.datetime(1992, 2, 21, 0, 0), 2.385417),\n",
|
||||
" (datetime.datetime(1992, 2, 24, 0, 0), 2.3932290000000003),\n",
|
||||
" (datetime.datetime(1992, 2, 25, 0, 0), 2.411458),\n",
|
||||
" (datetime.datetime(1992, 2, 26, 0, 0), 2.541667),\n",
|
||||
" (datetime.datetime(1992, 2, 27, 0, 0), 2.601563),\n",
|
||||
" (datetime.datetime(1992, 2, 28, 0, 0), 2.572917),\n",
|
||||
" (datetime.datetime(1992, 3, 2, 0, 0), 2.5625),\n",
|
||||
" (datetime.datetime(1992, 3, 3, 0, 0), 2.567708)]"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"ts.iloc[:10]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "dc469722-c816-4b57-8d91-7a3b865f86be",
|
||||
"metadata": {
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"CPU times: total: 297 ms\n",
|
||||
"Wall time: 290 ms\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"from_date = datetime.date(1994, 1, 1)\n",
|
||||
"to_date = datetime.date(2022, 1, 1)\n",
|
||||
"# print(ts.calculate_returns(to_date, years=7))\n",
|
||||
"rr = ts.calculate_rolling_returns(from_date, to_date)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "e5d357b4-4fe5-4a0a-8107-0ab6828d7c41",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"TimeSeries([(datetime.datetime(1994, 1, 3, 0, 0), -0.06149359306648605),\n",
|
||||
"\t (datetime.datetime(1994, 1, 4, 0, 0), -0.05433177603118022),\n",
|
||||
"\t (datetime.datetime(1994, 1, 5, 0, 0), -0.04913276300578029)\n",
|
||||
"\t ...\n",
|
||||
"\t (datetime.datetime(2021, 12, 29, 0, 0), 0.5255410267822715),\n",
|
||||
"\t (datetime.datetime(2021, 12, 30, 0, 0), 0.5306749265370103),\n",
|
||||
"\t (datetime.datetime(2021, 12, 31, 0, 0), 0.5120942811985818)], frequency='D')"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"rr"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "4bad2efa",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Series([1.0, 2.0, 3.0, 4.0, 5.0])"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"sr = Series([1, 2, 3, 4, 5], 'number')\n",
|
||||
"sr"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "adceda69",
|
||||
"id": "a54bfbdf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fincal.fincal import TimeSeries\n",
|
||||
"import datetime\n",
|
||||
"ts = TimeSeries(data = [('2021-01-01', 220), ('2021-02-01', 230), ('2021-03-01', 240)], frequency='M')"
|
||||
"data = [\n",
|
||||
" (\"2022-01-01\", 10),\n",
|
||||
" (\"2022-01-02\", 12),\n",
|
||||
" (\"2022-01-03\", 14)\n",
|
||||
" # (\"2022-01-04\", 16),\n",
|
||||
" # (\"2022-01-06\", 18),\n",
|
||||
" # (\"2022-01-07\", 20),\n",
|
||||
" # (\"2022-01-09\", 22),\n",
|
||||
" # (\"2022-01-10\", 24),\n",
|
||||
" # (\"2022-01-11\", 26),\n",
|
||||
" # (\"2022-01-12\", 28),\n",
|
||||
" # (\"2023-01-01\", 30),\n",
|
||||
" # (\"2023-01-02\", 32),\n",
|
||||
" # (\"2023-01-03\", 34),\n",
|
||||
"]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "68cf9f8c",
|
||||
"id": "fcc5f8f1",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(datetime.datetime(2021, 2, 1, 0, 0), 0.045454545454545414)"
|
||||
"TimeSeries([(datetime.datetime(2022, 1, 1, 0, 0), 10),\n",
|
||||
"\t(datetime.datetime(2022, 1, 2, 0, 0), 12),\n",
|
||||
"\t(datetime.datetime(2022, 1, 3, 0, 0), 14)], frequency='M')"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
@ -250,38 +75,294 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"ts.calculate_returns('2021-02-05', interval_type='months', interval_value=1, compounding=False)"
|
||||
"ts = fc.TimeSeries(data, 'M')\n",
|
||||
"ts"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "a583347f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"D = {'a': 1, 'b': 2}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "f79ac787",
|
||||
"execution_count": 7,
|
||||
"id": "c9e9cb1b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"dict_keys(['a', 'b'])"
|
||||
"TimeSeries([(datetime.datetime(2022, 1, 1, 0, 0), 10),\n",
|
||||
"\t(datetime.datetime(2022, 1, 2, 0, 0), 12),\n",
|
||||
"\t(datetime.datetime(2022, 1, 3, 0, 0), 14),\n",
|
||||
"\t(datetime.datetime(2022, 1, 4, 0, 0), 15),\n",
|
||||
"\t(datetime.datetime(2022, 1, 5, 0, 0), 16)], frequency='M')"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"D.keys()"
|
||||
"ts['2022-01-04'] = 15\n",
|
||||
"ts"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "8e812756",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"TimeSeries([(datetime.datetime(2022, 1, 1, 0, 0), 10),\n",
|
||||
"\t (datetime.datetime(2022, 1, 8, 0, 0), 20),\n",
|
||||
"\t (datetime.datetime(2022, 1, 15, 0, 0), 28)\n",
|
||||
"\t ...\n",
|
||||
"\t (datetime.datetime(2022, 12, 17, 0, 0), 28),\n",
|
||||
"\t (datetime.datetime(2022, 12, 24, 0, 0), 28),\n",
|
||||
"\t (datetime.datetime(2022, 12, 31, 0, 0), 28)], frequency='W')"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"ts.expand('W', 'ffill')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "55918da9-2df6-4773-9ca0-e19b52c3ece2",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"TimeSeries([(datetime.datetime(2022, 1, 1, 0, 0), 10),\n",
|
||||
"\t(datetime.datetime(2022, 4, 1, 0, 0), 28),\n",
|
||||
"\t(datetime.datetime(2022, 7, 1, 0, 0), 28),\n",
|
||||
"\t(datetime.datetime(2022, 10, 1, 0, 0), 28),\n",
|
||||
"\t(datetime.datetime(2023, 1, 1, 0, 0), 30)], frequency='Q')"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"ts.shrink('Q', 'ffill')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "36eefec7-7dbf-4a28-ac50-2e502d9d6864",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"weekly_data = [('2017-01-01', 67),\n",
|
||||
"('2017-01-08', 79),\n",
|
||||
"('2017-01-15', 73),\n",
|
||||
"('2017-01-22', 63),\n",
|
||||
"('2017-01-29', 85),\n",
|
||||
"('2017-02-05', 66),\n",
|
||||
"('2017-02-12', 78),\n",
|
||||
"('2017-02-19', 75),\n",
|
||||
"('2017-02-26', 76),\n",
|
||||
"('2017-03-05', 82),\n",
|
||||
"('2017-03-12', 85),\n",
|
||||
"('2017-03-19', 63),\n",
|
||||
"('2017-03-26', 78),\n",
|
||||
"('2017-04-02', 65),\n",
|
||||
"('2017-04-09', 85),\n",
|
||||
"('2017-04-16', 86),\n",
|
||||
"('2017-04-23', 67),\n",
|
||||
"('2017-04-30', 65),\n",
|
||||
"('2017-05-07', 82),\n",
|
||||
"('2017-05-14', 73),\n",
|
||||
"('2017-05-21', 78),\n",
|
||||
"('2017-05-28', 74),\n",
|
||||
"('2017-06-04', 62),\n",
|
||||
"('2017-06-11', 84),\n",
|
||||
"('2017-06-18', 83)]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "39bd8598-ab0f-4c81-8428-ad8248e686d3",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"week_ts = fc.TimeSeries(weekly_data, 'W')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"id": "d64dd3c6-4295-4301-90e4-5c74ea23c4af",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"(datetime.datetime(2017, 1, 1, 0, 0), 67)\n",
|
||||
"(datetime.datetime(2017, 2, 1, 0, 0), 85)\n",
|
||||
"(datetime.datetime(2017, 3, 1, 0, 0), 76)\n",
|
||||
"(datetime.datetime(2017, 4, 1, 0, 0), 78)\n",
|
||||
"(datetime.datetime(2017, 5, 1, 0, 0), 65)\n",
|
||||
"(datetime.datetime(2017, 6, 1, 0, 0), 74)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for i in week_ts.shrink('M', 'ffill', skip_weekends=True):\n",
|
||||
" print(i)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"id": "a549c5c0-c89a-4cc3-b396-c4afa77a9879",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"ename": "OverflowError",
|
||||
"evalue": "date value out of range",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
|
||||
"File \u001b[0;32m~/Documents/projects/fincal/fincal/core.py:405\u001b[0m, in \u001b[0;36mTimeSeriesCore.get\u001b[0;34m(self, date, default, closest)\u001b[0m\n\u001b[1;32m 404\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 405\u001b[0m item \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_item_from_date\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdate\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 406\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m item\n",
|
||||
"File \u001b[0;32m~/Documents/projects/fincal/fincal/core.py:69\u001b[0m, in \u001b[0;36mdate_parser.<locals>.parse_dates.<locals>.wrapper_func\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 68\u001b[0m args[j] \u001b[38;5;241m=\u001b[39m parsed_date\n\u001b[0;32m---> 69\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[0;32m~/Documents/projects/fincal/fincal/core.py:328\u001b[0m, in \u001b[0;36mTimeSeriesCore._get_item_from_date\u001b[0;34m(self, date)\u001b[0m\n\u001b[1;32m 326\u001b[0m \u001b[38;5;129m@date_parser\u001b[39m(\u001b[38;5;241m1\u001b[39m)\n\u001b[1;32m 327\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_get_item_from_date\u001b[39m(\u001b[38;5;28mself\u001b[39m, date: \u001b[38;5;28mstr\u001b[39m \u001b[38;5;241m|\u001b[39m datetime\u001b[38;5;241m.\u001b[39mdatetime):\n\u001b[0;32m--> 328\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m date, \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdata\u001b[49m\u001b[43m[\u001b[49m\u001b[43mdate\u001b[49m\u001b[43m]\u001b[49m\n",
|
||||
"\u001b[0;31mKeyError\u001b[0m: datetime.datetime(1, 1, 1, 0, 0)",
|
||||
"\nDuring handling of the above exception, another exception occurred:\n",
|
||||
"\u001b[0;31mOverflowError\u001b[0m Traceback (most recent call last)",
|
||||
"Input \u001b[0;32mIn [23]\u001b[0m, in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mweek_ts\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msync\u001b[49m\u001b[43m(\u001b[49m\u001b[43mts\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[0;32m~/Documents/projects/fincal/fincal/fincal.py:733\u001b[0m, in \u001b[0;36mTimeSeries.sync\u001b[0;34m(self, other, fill_method)\u001b[0m\n\u001b[1;32m 731\u001b[0m new_other[dt] \u001b[38;5;241m=\u001b[39m other[dt][\u001b[38;5;241m1\u001b[39m]\n\u001b[1;32m 732\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 733\u001b[0m new_other[dt] \u001b[38;5;241m=\u001b[39m other\u001b[38;5;241m.\u001b[39mget(dt, closest\u001b[38;5;241m=\u001b[39mclosest)[\u001b[38;5;241m1\u001b[39m]\n\u001b[1;32m 735\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m(new_other, frequency\u001b[38;5;241m=\u001b[39mother\u001b[38;5;241m.\u001b[39mfrequency\u001b[38;5;241m.\u001b[39msymbol)\n",
|
||||
"File \u001b[0;32m~/Documents/projects/fincal/fincal/core.py:69\u001b[0m, in \u001b[0;36mdate_parser.<locals>.parse_dates.<locals>.wrapper_func\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 67\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 68\u001b[0m args[j] \u001b[38;5;241m=\u001b[39m parsed_date\n\u001b[0;32m---> 69\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||
"File \u001b[0;32m~/Documents/projects/fincal/fincal/core.py:408\u001b[0m, in \u001b[0;36mTimeSeriesCore.get\u001b[0;34m(self, date, default, closest)\u001b[0m\n\u001b[1;32m 406\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m item\n\u001b[1;32m 407\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m:\n\u001b[0;32m--> 408\u001b[0m date \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m delta\n",
|
||||
"\u001b[0;31mOverflowError\u001b[0m: date value out of range"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"week_ts.sync(ts)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "4755aea3-3655-4651-91d2-8e54c24303bc",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import fincal as fc"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "bd9887b3-d98a-4c80-8f95-ef7b7f19ded4",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"['date', 'nav']\n",
|
||||
"CPU times: user 56.9 ms, sys: 3.3 ms, total: 60.2 ms\n",
|
||||
"Wall time: 60.2 ms\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"ts = fc.read_csv('test_files/msft.csv', frequency='D')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "b7c176d4-d89f-4bda-9d67-75463eb90468",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"(datetime.datetime(2022, 2, 9, 0, 0), 311.209991)\n",
|
||||
"(datetime.datetime(2022, 2, 10, 0, 0), 302.380005)\n",
|
||||
"(datetime.datetime(2022, 2, 11, 0, 0), 295.040009)\n",
|
||||
"(datetime.datetime(2022, 2, 14, 0, 0), 295.0)\n",
|
||||
"(datetime.datetime(2022, 2, 15, 0, 0), 300.470001)\n",
|
||||
"(datetime.datetime(2022, 2, 16, 0, 0), 299.5)\n",
|
||||
"(datetime.datetime(2022, 2, 17, 0, 0), 290.730011)\n",
|
||||
"(datetime.datetime(2022, 2, 18, 0, 0), 287.929993)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for i in ts.tail(8):\n",
|
||||
" print(i)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "69c57754-a6fb-4881-9359-ba17c7fb8be5",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"CPU times: user 1.85 ms, sys: 143 µs, total: 1.99 ms\n",
|
||||
"Wall time: 2 ms\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"ts['2022-02-12'] = 295"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "7aa02023-406e-4700-801c-c06390ddf914",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"CPU times: user 3.7 ms, sys: 121 µs, total: 3.82 ms\n",
|
||||
"Wall time: 3.84 ms\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'start_date': datetime.datetime(1999, 12, 27, 0, 0),\n",
|
||||
" 'end_date': datetime.datetime(2009, 3, 9, 0, 0),\n",
|
||||
" 'drawdown': -0.7456453305351521}"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"ts.max_drawdown()"
|
||||
]
|
||||
}
|
||||
],
|
||||
@ -301,7 +382,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.3"
|
||||
"version": "3.10.2"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@ -179,6 +179,33 @@ class TestSlicing:
|
||||
assert len(ts_slice) == 2
|
||||
|
||||
|
||||
class TestSetitem:
|
||||
data = [("2021-01-01", 220), ("2021-01-04", 230), ("2021-03-07", 240)]
|
||||
|
||||
def test_setitem(self):
|
||||
ts = TimeSeriesCore(self.data, frequency="D")
|
||||
assert len(ts) == 3
|
||||
|
||||
ts["2021-01-02"] = 225
|
||||
assert len(ts) == 4
|
||||
assert ts["2021-01-02"][1] == 225
|
||||
|
||||
ts["2021-01-02"] = 227.6
|
||||
assert len(ts) == 4
|
||||
assert ts["2021-01-02"][1] == 227.6
|
||||
|
||||
def test_errors(self):
|
||||
ts = TimeSeriesCore(self.data, frequency="D")
|
||||
with pytest.raises(TypeError):
|
||||
ts["2021-01-03"] = "abc"
|
||||
|
||||
with pytest.raises(NotImplementedError):
|
||||
ts.iloc[4] = 4
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
ts["abc"] = 12
|
||||
|
||||
|
||||
class TestTimeSeriesCoreHeadTail:
|
||||
data = [
|
||||
("2021-01-01", 220),
|
||||
|
@ -5,10 +5,14 @@ from typing import List
|
||||
|
||||
import pytest
|
||||
from dateutil.relativedelta import relativedelta
|
||||
from fincal.core import AllFrequencies, Frequency
|
||||
from fincal import (
|
||||
AllFrequencies,
|
||||
FincalOptions,
|
||||
Frequency,
|
||||
TimeSeries,
|
||||
create_date_series,
|
||||
)
|
||||
from fincal.exceptions import DateNotFoundError
|
||||
from fincal.fincal import TimeSeries, create_date_series
|
||||
from fincal.utils import FincalOptions
|
||||
|
||||
|
||||
def create_prices(s0: float, mu: float, sigma: float, num_prices: int) -> list:
|
||||
@ -507,3 +511,18 @@ class TestDrawdown:
|
||||
"drawdown": -0.2584760499552089,
|
||||
}
|
||||
assert mdd == expeced_response
|
||||
|
||||
|
||||
class TestSync:
|
||||
def test_weekly_to_daily(self):
|
||||
daily_data = create_test_data(AllFrequencies.D, num=15)
|
||||
weekly_data = create_test_data(AllFrequencies.W, num=3)
|
||||
|
||||
daily_ts = TimeSeries(daily_data, frequency="D")
|
||||
weekly_ts = TimeSeries(weekly_data, frequency="W")
|
||||
|
||||
synced_weekly_ts = daily_ts.sync(weekly_ts)
|
||||
assert len(daily_ts) == len(synced_weekly_ts)
|
||||
assert synced_weekly_ts.frequency == AllFrequencies.D
|
||||
assert "2017-01-02" in synced_weekly_ts
|
||||
assert synced_weekly_ts["2017-01-02"][1] == synced_weekly_ts["2017-01-01"][1]
|
||||
|
Loading…
Reference in New Issue
Block a user