Compare commits
5 Commits
6c8800bef2
...
371b319e9d
Author | SHA1 | Date | |
---|---|---|---|
371b319e9d | |||
a0499ca157 | |||
33c56d8f6c | |||
e450395ad0 | |||
3ffec7b11b |
161
README.md
161
README.md
@ -29,7 +29,7 @@ Example:
|
||||
... ('2021-06-01', 20)
|
||||
...]
|
||||
|
||||
>>> ts = fc.TimeSeries(time_series_data)
|
||||
>>> ts = pft.TimeSeries(time_series_data)
|
||||
```
|
||||
|
||||
### Sample usage
|
||||
@ -46,12 +46,169 @@ With PyFacts, you never have to go into the hassle of creating datetime objects
|
||||
|
||||
```
|
||||
>>> import pyfacts as pft
|
||||
>>> fc.PyfactsOptions.date_format = '%d-%m-%Y'
|
||||
>>> pft.PyfactsOptions.date_format = '%d-%m-%Y'
|
||||
```
|
||||
Now the library will automatically parse all dates as DD-MM-YYYY
|
||||
|
||||
If you happen to have any one situation where you need to use a different format, all methods accept a date_format parameter to override the default.
|
||||
|
||||
|
||||
### Working with multiple time series
|
||||
While working with time series data, you will often need to perform calculations on the data. PyFacts supports all kinds of mathematical operations on time series.
|
||||
|
||||
Example:
|
||||
```
|
||||
>>> import pyfacts as pft
|
||||
|
||||
>>> time_series_data = [
|
||||
... ('2021-01-01', 10),
|
||||
... ('2021-02-01', 12),
|
||||
... ('2021-03-01', 14),
|
||||
... ('2021-04-01', 16),
|
||||
... ('2021-05-01', 18),
|
||||
... ('2021-06-01', 20)
|
||||
...]
|
||||
|
||||
>>> ts = pft.TimeSeries(time_series_data)
|
||||
>>> print(ts/100)
|
||||
|
||||
TimeSeries([(datetime.datetime(2022, 1, 1, 0, 0), 0.1),
|
||||
(datetime.datetime(2022, 1, 2, 0, 0), 0.12),
|
||||
(datetime.datetime(2022, 1, 3, 0, 0), 0.14),
|
||||
(datetime.datetime(2022, 1, 4, 0, 0), 0.16),
|
||||
(datetime.datetime(2022, 1, 6, 0, 0), 0.18),
|
||||
(datetime.datetime(2022, 1, 7, 0, 0), 0.2)], frequency='M')
|
||||
```
|
||||
|
||||
Mathematical operations can also be done between time series as long as they have the same dates.
|
||||
|
||||
Example:
|
||||
```
|
||||
>>> import pyfacts as pft
|
||||
|
||||
>>> time_series_data = [
|
||||
... ('2021-01-01', 10),
|
||||
... ('2021-02-01', 12),
|
||||
... ('2021-03-01', 14),
|
||||
... ('2021-04-01', 16),
|
||||
... ('2021-05-01', 18),
|
||||
... ('2021-06-01', 20)
|
||||
...]
|
||||
|
||||
>>> ts = pft.TimeSeries(time_series_data)
|
||||
>>> ts2 = pft.TimeSeries(time_series_data)
|
||||
>>> print(ts/ts2)
|
||||
|
||||
TimeSeries([(datetime.datetime(2022, 1, 1, 0, 0), 1.0),
|
||||
(datetime.datetime(2022, 1, 2, 0, 0), 1.0),
|
||||
(datetime.datetime(2022, 1, 3, 0, 0), 1.0),
|
||||
(datetime.datetime(2022, 1, 4, 0, 0), 1.0),
|
||||
(datetime.datetime(2022, 1, 6, 0, 0), 1.0),
|
||||
(datetime.datetime(2022, 1, 7, 0, 0), 1.0)], frequency='M')
|
||||
```
|
||||
|
||||
However, if the dates are not in sync, PyFacts provides convenience methods for syncronising dates.
|
||||
|
||||
Example:
|
||||
```
|
||||
>>> import pyfacts as pft
|
||||
|
||||
>>> data1 = [
|
||||
... ('2021-01-01', 10),
|
||||
... ('2021-02-01', 12),
|
||||
... ('2021-03-01', 14),
|
||||
... ('2021-04-01', 16),
|
||||
... ('2021-05-01', 18),
|
||||
... ('2021-06-01', 20)
|
||||
...]
|
||||
|
||||
>>> data2 = [
|
||||
... ("2022-15-01", 20),
|
||||
... ("2022-15-02", 22),
|
||||
... ("2022-15-03", 24),
|
||||
... ("2022-15-04", 26),
|
||||
... ("2022-15-06", 28),
|
||||
... ("2022-15-07", 30)
|
||||
...]
|
||||
|
||||
>>> ts = pft.TimeSeries(data, frequency='M', date_format='%Y-%d-%m')
|
||||
>>> ts2 = pft.TimeSeries(data2, frequency='M', date_format='%Y-%d-%m')
|
||||
>>> ts.sync(ts2, fill_method='bfill') # Sync ts2 with ts1
|
||||
|
||||
TimeSeries([(datetime.datetime(2022, 1, 1, 0, 0), 20.0),
|
||||
(datetime.datetime(2022, 2, 1, 0, 0), 22.0),
|
||||
(datetime.datetime(2022, 3, 1, 0, 0), 24.0),
|
||||
(datetime.datetime(2022, 4, 1, 0, 0), 26.0),
|
||||
(datetime.datetime(2022, 6, 1, 0, 0), 28.0),
|
||||
(datetime.datetime(2022, 7, 1, 0, 0), 30.0)], frequency='M')
|
||||
```
|
||||
|
||||
Even if you need to perform calculations on data with different frequencies, PyFacts will let you easily handle this with the expand and shrink methods.
|
||||
|
||||
Example:
|
||||
```
|
||||
>>> data = [
|
||||
... ("2022-01-01", 10),
|
||||
... ("2022-02-01", 12),
|
||||
... ("2022-03-01", 14),
|
||||
... ("2022-04-01", 16),
|
||||
... ("2022-05-01", 18),
|
||||
... ("2022-06-01", 20)
|
||||
...]
|
||||
|
||||
>>> ts = pft.TimeSeries(data, 'M')
|
||||
>>> ts.expand(to_frequency='W', method='ffill')
|
||||
|
||||
TimeSeries([(datetime.datetime(2022, 1, 1, 0, 0), 10.0),
|
||||
(datetime.datetime(2022, 1, 8, 0, 0), 10.0),
|
||||
(datetime.datetime(2022, 1, 15, 0, 0), 10.0)
|
||||
...
|
||||
(datetime.datetime(2022, 5, 14, 0, 0), 18.0),
|
||||
(datetime.datetime(2022, 5, 21, 0, 0), 18.0),
|
||||
(datetime.datetime(2022, 5, 28, 0, 0), 18.0)], frequency='W')
|
||||
|
||||
>>> ts.shrink(to_frequency='Q', method='ffill')
|
||||
|
||||
TimeSeries([(datetime.datetime(2022, 1, 1, 0, 0), 10.0),
|
||||
(datetime.datetime(2022, 4, 1, 0, 0), 16.0)], frequency='Q')
|
||||
```
|
||||
|
||||
If you want to shorten the timeframe of the data with an aggregation function, the transform method will help you out. Currently it supports sum and mean.
|
||||
|
||||
Example:
|
||||
```
|
||||
>>> data = [
|
||||
... ("2022-01-01", 10),
|
||||
... ("2022-02-01", 12),
|
||||
... ("2022-03-01", 14),
|
||||
... ("2022-04-01", 16),
|
||||
... ("2022-05-01", 18),
|
||||
... ("2022-06-01", 20),
|
||||
... ("2022-07-01", 22),
|
||||
... ("2022-08-01", 24),
|
||||
... ("2022-09-01", 26),
|
||||
... ("2022-10-01", 28),
|
||||
... ("2022-11-01", 30),
|
||||
... ("2022-12-01", 32)
|
||||
...]
|
||||
|
||||
>>> ts = pft.TimeSeries(data, 'M')
|
||||
>>> ts.transform(to_frequency='Q', method='sum')
|
||||
|
||||
TimeSeries([(datetime.datetime(2022, 1, 1, 0, 0), 36.0),
|
||||
(datetime.datetime(2022, 4, 1, 0, 0), 54.0),
|
||||
(datetime.datetime(2022, 7, 1, 0, 0), 72.0),
|
||||
(datetime.datetime(2022, 10, 1, 0, 0), 90.0)], frequency='Q')
|
||||
|
||||
>>> ts.transform(to_frequency='Q', method='mean')
|
||||
|
||||
TimeSeries([(datetime.datetime(2022, 1, 1, 0, 0), 12.0),
|
||||
(datetime.datetime(2022, 4, 1, 0, 0), 18.0),
|
||||
(datetime.datetime(2022, 7, 1, 0, 0), 24.0),
|
||||
(datetime.datetime(2022, 10, 1, 0, 0), 30.0)], frequency='Q')
|
||||
```
|
||||
|
||||
|
||||
## To-do
|
||||
|
||||
### Core features
|
||||
|
@ -180,7 +180,7 @@ class Series(UserList):
|
||||
if len(self) != len(other):
|
||||
raise ValueError("Length of Series must be same for comparison")
|
||||
|
||||
elif (self.dtype != float and isinstance(other, Number)) or not isinstance(other, self.dtype):
|
||||
elif self.dtype != float and isinstance(other, Number):
|
||||
raise Exception(f"Cannot compare type {self.dtype.__name__} to {type(other).__name__}")
|
||||
|
||||
return other
|
||||
@ -300,14 +300,16 @@ class Series(UserList):
|
||||
|
||||
|
||||
def _validate_frequency(
|
||||
data: List[Tuple[datetime.datetime, float]], provided_frequency: Literal["D", "W", "M", "Q", "H", "Y"] = None
|
||||
data: List[Tuple[datetime.datetime, float]],
|
||||
provided_frequency: Literal["D", "W", "M", "Q", "H", "Y"] = None,
|
||||
raise_error: bool = True,
|
||||
):
|
||||
"""Checks the data and returns the expected frequency."""
|
||||
if provided_frequency is not None:
|
||||
provided_frequency = getattr(AllFrequencies, provided_frequency)
|
||||
start_date = data[0][0]
|
||||
end_date = data[-1][0]
|
||||
overall_gap = (end_date - start_date).days
|
||||
overall_gap = (end_date - start_date).days + 1
|
||||
num_data_points = len(data)
|
||||
# days_per_data = num_data_points / overall_gap
|
||||
|
||||
@ -325,7 +327,10 @@ def _validate_frequency(
|
||||
expected_frequency = frequency
|
||||
break
|
||||
else:
|
||||
raise ValueError("Data does not match any known frequency. Perhaps you have too many missing data points.")
|
||||
if raise_error:
|
||||
raise ValueError("Data does not match any known frequency. Perhaps you have too many missing data points.")
|
||||
else:
|
||||
expected_frequency = provided_frequency.symbol
|
||||
|
||||
expected_data_points = expected_data_points[expected_frequency]
|
||||
if provided_frequency is None:
|
||||
@ -387,7 +392,7 @@ class TimeSeriesCore:
|
||||
|
||||
ts_data = _preprocess_timeseries(ts_data, date_format=date_format)
|
||||
|
||||
validation = _validate_frequency(data=ts_data, provided_frequency=frequency)
|
||||
validation = _validate_frequency(data=ts_data, provided_frequency=frequency, raise_error=validate_frequency)
|
||||
if frequency is None:
|
||||
frequency = validation["expected_frequency"]
|
||||
|
||||
@ -508,7 +513,7 @@ class TimeSeriesCore:
|
||||
"""Helper function to retrieve items using a list"""
|
||||
|
||||
data_to_return = [self._get_item_from_key(key) for key in date_list]
|
||||
return self.__class__(data_to_return, frequency=self.frequency.symbol)
|
||||
return self.__class__(data_to_return, frequency=self.frequency.symbol, validate_frequency=False)
|
||||
|
||||
def _get_item_from_series(self, series: Series):
|
||||
"""Helper function to retrieve item using a Series object
|
||||
|
@ -344,8 +344,8 @@ class TimeSeries(TimeSeriesCore):
|
||||
@date_parser(1, 2)
|
||||
def calculate_rolling_returns(
|
||||
self,
|
||||
from_date: datetime.date | str,
|
||||
to_date: datetime.date | str,
|
||||
from_date: datetime.date | str = None,
|
||||
to_date: datetime.date | str = None,
|
||||
frequency: Literal["D", "W", "M", "Q", "H", "Y"] = None,
|
||||
as_on_match: str = "closest",
|
||||
prior_match: str = "closest",
|
||||
@ -429,6 +429,13 @@ class TimeSeries(TimeSeriesCore):
|
||||
frequency = getattr(AllFrequencies, frequency)
|
||||
except AttributeError:
|
||||
raise ValueError(f"Invalid argument for frequency {frequency}")
|
||||
if from_date is None:
|
||||
from_date = self.start_date + relativedelta(
|
||||
days=int(_interval_to_years(return_period_unit, return_period_value) * 365 + 1)
|
||||
)
|
||||
|
||||
if to_date is None:
|
||||
to_date = self.end_date
|
||||
|
||||
dates = create_date_series(from_date, to_date, frequency.symbol)
|
||||
if frequency == AllFrequencies.D:
|
||||
|
@ -1,6 +1,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import datetime
|
||||
import math
|
||||
import statistics
|
||||
from typing import Literal
|
||||
|
||||
@ -472,13 +473,14 @@ def sortino_ratio(
|
||||
closest: Literal["previous", "next"] = "previous",
|
||||
date_format: str = None,
|
||||
) -> float:
|
||||
"""Calculate the Sharpe ratio of any time series
|
||||
"""Calculate the Sortino ratio of any time series
|
||||
|
||||
Sharpe ratio is a measure of returns per unit of risk,
|
||||
where risk is measured by the standard deviation of the returns.
|
||||
Sortino ratio is a variation of the Sharpe ratio,
|
||||
where risk is measured as standard deviation of negative returns only.
|
||||
Since deviation on the positive side is not undesirable, hence sortino ratio excludes positive deviations.
|
||||
|
||||
The formula for Sharpe ratio is:
|
||||
(average asset return - risk free rate)/volatility of asset returns
|
||||
The formula for Sortino ratio is:
|
||||
(average asset return - risk free rate)/volatility of negative asset returns
|
||||
|
||||
Parameters
|
||||
----------
|
||||
@ -528,7 +530,7 @@ def sortino_ratio(
|
||||
|
||||
Returns
|
||||
-------
|
||||
Value of Sharpe ratio as a float.
|
||||
Value of Sortino ratio as a float.
|
||||
|
||||
Raises
|
||||
------
|
||||
@ -559,11 +561,13 @@ def sortino_ratio(
|
||||
"closest": closest,
|
||||
"date_format": date_format,
|
||||
}
|
||||
average_rr_ts = time_series_data.calculate_rolling_returns(**common_params, annual_compounded_returns=True)
|
||||
average_rr_ts = time_series_data.calculate_rolling_returns(**common_params, annual_compounded_returns=False)
|
||||
average_rr = statistics.mean(average_rr_ts.values)
|
||||
annualized_average_rr = (1 + average_rr) ** (365 / interval_days) - 1
|
||||
|
||||
excess_returns = average_rr - risk_free_rate
|
||||
excess_returns = annualized_average_rr - risk_free_rate
|
||||
sd = statistics.stdev([i for i in average_rr_ts.values if i < 0])
|
||||
sd *= math.sqrt(365 / interval_days)
|
||||
|
||||
sortino_ratio_value = excess_returns / sd
|
||||
return sortino_ratio_value
|
||||
|
@ -1,6 +1,6 @@
|
||||
import datetime
|
||||
|
||||
from fincal.core import Series
|
||||
from pyfacts.core import Series
|
||||
|
||||
s1 = Series([2.5, 6.2, 5.6, 8.4, 7.4, 1.5, 9.6, 5])
|
||||
|
||||
@ -19,7 +19,7 @@ dt_lst = [
|
||||
datetime.datetime(2020, 6, 19, 0, 0),
|
||||
datetime.datetime(2016, 3, 16, 0, 0),
|
||||
datetime.datetime(2017, 4, 25, 0, 0),
|
||||
datetime.datetime(2016, 7, 10, 0, 0)
|
||||
datetime.datetime(2016, 7, 10, 0, 0),
|
||||
]
|
||||
|
||||
s2 = Series(dt_lst)
|
||||
|
@ -62,6 +62,7 @@ def sample_data_generator(
|
||||
mu: float = 0.1,
|
||||
sigma: float = 0.05,
|
||||
eomonth: bool = False,
|
||||
dates_as_string: bool = False,
|
||||
) -> List[tuple]:
|
||||
"""Creates TimeSeries data
|
||||
|
||||
@ -95,6 +96,8 @@ def sample_data_generator(
|
||||
}
|
||||
end_date = start_date + relativedelta(**timedelta_dict)
|
||||
dates = pft.create_date_series(start_date, end_date, frequency.symbol, skip_weekends=skip_weekends, eomonth=eomonth)
|
||||
if dates_as_string:
|
||||
dates = [dt.strftime("%Y-%m-%d") for dt in dates]
|
||||
values = create_prices(1000, mu, sigma, num)
|
||||
ts = list(zip(dates, values))
|
||||
return ts
|
||||
|
@ -1,16 +1,15 @@
|
||||
import datetime
|
||||
import random
|
||||
from typing import Literal, Mapping, Sequence
|
||||
from typing import Mapping
|
||||
|
||||
import pyfacts as pft
|
||||
import pytest
|
||||
from pyfacts.core import AllFrequencies, Frequency, Series, TimeSeriesCore
|
||||
from pyfacts.pyfacts import create_date_series
|
||||
from pyfacts.utils import PyfactsOptions
|
||||
|
||||
|
||||
class TestFrequency:
|
||||
def test_creation(self):
|
||||
D = Frequency("daily", "days", 1, 1, "D")
|
||||
D = pft.Frequency("daily", "days", 1, 1, "D")
|
||||
assert D.days == 1
|
||||
assert D.symbol == "D"
|
||||
assert D.name == "daily"
|
||||
@ -18,106 +17,103 @@ class TestFrequency:
|
||||
assert D.freq_type == "days"
|
||||
|
||||
|
||||
def create_test_data(
|
||||
frequency: str,
|
||||
eomonth: bool,
|
||||
n: int,
|
||||
gaps: float,
|
||||
month_position: Literal["start", "middle", "end"],
|
||||
date_as_str: bool,
|
||||
as_outer_type: Literal["dict", "list"] = "list",
|
||||
as_inner_type: Literal["dict", "list", "tuple"] = "tuple",
|
||||
) -> Sequence[tuple]:
|
||||
start_dates = {
|
||||
"start": datetime.datetime(2016, 1, 1),
|
||||
"middle": datetime.datetime(2016, 1, 15),
|
||||
"end": datetime.datetime(2016, 1, 31),
|
||||
}
|
||||
end_date = datetime.datetime(2021, 12, 31)
|
||||
dates = create_date_series(start_dates[month_position], end_date, frequency=frequency, eomonth=eomonth)
|
||||
dates = dates[:n]
|
||||
if gaps:
|
||||
num_gaps = int(len(dates) * gaps)
|
||||
to_remove = random.sample(dates, num_gaps)
|
||||
for i in to_remove:
|
||||
dates.remove(i)
|
||||
if date_as_str:
|
||||
dates = [i.strftime("%Y-%m-%d") for i in dates]
|
||||
|
||||
values = [random.randint(8000, 90000) / 100 for _ in dates]
|
||||
|
||||
data = list(zip(dates, values))
|
||||
if as_outer_type == "list":
|
||||
if as_inner_type == "list":
|
||||
data = [list(i) for i in data]
|
||||
elif as_inner_type == "dict[1]":
|
||||
data = [dict((i,)) for i in data]
|
||||
elif as_inner_type == "dict[2]":
|
||||
data = [dict(date=i, value=j) for i, j in data]
|
||||
elif as_outer_type == "dict":
|
||||
data = dict(data)
|
||||
|
||||
return data
|
||||
|
||||
|
||||
class TestAllFrequencies:
|
||||
def test_attributes(self):
|
||||
assert hasattr(AllFrequencies, "D")
|
||||
assert hasattr(AllFrequencies, "M")
|
||||
assert hasattr(AllFrequencies, "Q")
|
||||
assert hasattr(pft.AllFrequencies, "D")
|
||||
assert hasattr(pft.AllFrequencies, "M")
|
||||
assert hasattr(pft.AllFrequencies, "Q")
|
||||
|
||||
def test_days(self):
|
||||
assert AllFrequencies.D.days == 1
|
||||
assert AllFrequencies.M.days == 30
|
||||
assert AllFrequencies.Q.days == 91
|
||||
assert pft.AllFrequencies.D.days == 1
|
||||
assert pft.AllFrequencies.M.days == 30
|
||||
assert pft.AllFrequencies.Q.days == 91
|
||||
|
||||
def test_symbol(self):
|
||||
assert AllFrequencies.H.symbol == "H"
|
||||
assert AllFrequencies.W.symbol == "W"
|
||||
assert pft.AllFrequencies.H.symbol == "H"
|
||||
assert pft.AllFrequencies.W.symbol == "W"
|
||||
|
||||
def test_values(self):
|
||||
assert AllFrequencies.H.value == 6
|
||||
assert AllFrequencies.Y.value == 1
|
||||
assert pft.AllFrequencies.H.value == 6
|
||||
assert pft.AllFrequencies.Y.value == 1
|
||||
|
||||
def test_type(self):
|
||||
assert AllFrequencies.Q.freq_type == "months"
|
||||
assert AllFrequencies.W.freq_type == "days"
|
||||
assert pft.AllFrequencies.Q.freq_type == "months"
|
||||
assert pft.AllFrequencies.W.freq_type == "days"
|
||||
|
||||
|
||||
class TestSeries:
|
||||
def test_creation(self):
|
||||
series = Series([1, 2, 3, 4, 5, 6, 7], dtype="number")
|
||||
series = pft.Series([1, 2, 3, 4, 5, 6, 7], dtype="number")
|
||||
assert series.dtype == float
|
||||
assert series[2] == 3
|
||||
|
||||
dates = create_date_series("2021-01-01", "2021-01-31", frequency="D")
|
||||
series = Series(dates, dtype="date")
|
||||
dates = pft.create_date_series("2021-01-01", "2021-01-31", frequency="D")
|
||||
series = pft.Series(dates, dtype="date")
|
||||
assert series.dtype == datetime.datetime
|
||||
|
||||
|
||||
class TestTimeSeriesCore:
|
||||
data = [("2021-01-01", 220), ("2021-02-01", 230), ("2021-03-01", 240)]
|
||||
|
||||
def test_repr_str(self):
|
||||
ts = TimeSeriesCore(self.data, frequency="M")
|
||||
def test_repr_str(self, create_test_data):
|
||||
ts = pft.TimeSeriesCore(self.data, frequency="M")
|
||||
assert str(ts) in repr(ts).replace("\t", " ")
|
||||
|
||||
data = create_test_data(frequency="D", eomonth=False, n=50, gaps=0, month_position="start", date_as_str=True)
|
||||
ts = TimeSeriesCore(data, frequency="D")
|
||||
data = create_test_data(frequency=pft.AllFrequencies.D, eomonth=False, num=50, dates_as_string=True)
|
||||
ts = pft.TimeSeriesCore(data, frequency="D")
|
||||
assert "..." in str(ts)
|
||||
assert "..." in repr(ts)
|
||||
|
||||
def test_creation(self):
|
||||
ts = TimeSeriesCore(self.data, frequency="M")
|
||||
assert isinstance(ts, TimeSeriesCore)
|
||||
ts = pft.TimeSeriesCore(self.data, frequency="M")
|
||||
assert isinstance(ts, pft.TimeSeriesCore)
|
||||
assert isinstance(ts, Mapping)
|
||||
|
||||
def test_creation_no_freq(self, create_test_data):
|
||||
data = create_test_data(num=300, frequency=pft.AllFrequencies.D)
|
||||
ts = pft.TimeSeriesCore(data)
|
||||
assert ts.frequency == pft.AllFrequencies.D
|
||||
|
||||
data = create_test_data(num=300, frequency=pft.AllFrequencies.M)
|
||||
ts = pft.TimeSeriesCore(data)
|
||||
assert ts.frequency == pft.AllFrequencies.M
|
||||
|
||||
def test_creation_no_freq_missing_data(self, create_test_data):
|
||||
data = create_test_data(num=300, frequency=pft.AllFrequencies.D)
|
||||
data = random.sample(data, 182)
|
||||
ts = pft.TimeSeriesCore(data)
|
||||
assert ts.frequency == pft.AllFrequencies.D
|
||||
|
||||
data = create_test_data(num=300, frequency=pft.AllFrequencies.D)
|
||||
data = random.sample(data, 175)
|
||||
with pytest.raises(ValueError):
|
||||
ts = pft.TimeSeriesCore(data)
|
||||
|
||||
data = create_test_data(num=100, frequency=pft.AllFrequencies.W)
|
||||
data = random.sample(data, 70)
|
||||
ts = pft.TimeSeriesCore(data)
|
||||
assert ts.frequency == pft.AllFrequencies.W
|
||||
|
||||
data = create_test_data(num=100, frequency=pft.AllFrequencies.W)
|
||||
data = random.sample(data, 68)
|
||||
with pytest.raises(ValueError):
|
||||
pft.TimeSeriesCore(data)
|
||||
|
||||
def test_creation_wrong_freq(self, create_test_data):
|
||||
data = create_test_data(num=100, frequency=pft.AllFrequencies.W)
|
||||
with pytest.raises(ValueError):
|
||||
pft.TimeSeriesCore(data, frequency="D")
|
||||
|
||||
data = create_test_data(num=100, frequency=pft.AllFrequencies.D)
|
||||
with pytest.raises(ValueError):
|
||||
pft.TimeSeriesCore(data, frequency="W")
|
||||
|
||||
|
||||
class TestSlicing:
|
||||
data = [("2021-01-01", 220), ("2021-02-01", 230), ("2021-03-01", 240)]
|
||||
|
||||
def test_getitem(self):
|
||||
ts = TimeSeriesCore(self.data, frequency="M")
|
||||
ts = pft.TimeSeriesCore(self.data, frequency="M")
|
||||
assert ts.dates[0] == datetime.datetime(2021, 1, 1, 0, 0)
|
||||
assert ts.values[0] == 220
|
||||
assert ts["2021-01-01"][1] == 220
|
||||
@ -129,11 +125,11 @@ class TestSlicing:
|
||||
ts["2021-02-03"]
|
||||
subset_ts = ts[["2021-01-01", "2021-03-01"]]
|
||||
assert len(subset_ts) == 2
|
||||
assert isinstance(subset_ts, TimeSeriesCore)
|
||||
assert isinstance(subset_ts, pft.TimeSeriesCore)
|
||||
assert subset_ts.iloc[1][1] == 240
|
||||
|
||||
def test_get(self):
|
||||
ts = TimeSeriesCore(self.data, frequency="M")
|
||||
ts = pft.TimeSeriesCore(self.data, frequency="M")
|
||||
assert ts.dates[0] == datetime.datetime(2021, 1, 1, 0, 0)
|
||||
assert ts.values[0] == 220
|
||||
assert ts.get("2021-01-01")[1] == 220
|
||||
@ -147,43 +143,63 @@ class TestSlicing:
|
||||
assert ts.get("2021-02-10")[1] == 240
|
||||
|
||||
def test_contains(self):
|
||||
ts = TimeSeriesCore(self.data, frequency="M")
|
||||
ts = pft.TimeSeriesCore(self.data, frequency="M")
|
||||
assert datetime.datetime(2021, 1, 1) in ts
|
||||
assert "2021-01-01" in ts
|
||||
assert "2021-01-14" not in ts
|
||||
|
||||
def test_items(self):
|
||||
ts = TimeSeriesCore(self.data, frequency="M")
|
||||
ts = pft.TimeSeriesCore(self.data, frequency="M")
|
||||
for i, j in ts.items():
|
||||
assert j == self.data[0][1]
|
||||
break
|
||||
|
||||
def test_special_keys(self):
|
||||
ts = TimeSeriesCore(self.data, frequency="M")
|
||||
ts = pft.TimeSeriesCore(self.data, frequency="M")
|
||||
dates = ts["dates"]
|
||||
values = ts["values"]
|
||||
assert isinstance(dates, Series)
|
||||
assert isinstance(values, Series)
|
||||
assert isinstance(dates, pft.Series)
|
||||
assert isinstance(values, pft.Series)
|
||||
assert len(dates) == 3
|
||||
assert len(values) == 3
|
||||
assert dates[0] == datetime.datetime(2021, 1, 1, 0, 0)
|
||||
assert values[0] == 220
|
||||
|
||||
def test_iloc_slicing(self):
|
||||
ts = TimeSeriesCore(self.data, frequency="M")
|
||||
ts = pft.TimeSeriesCore(self.data, frequency="M")
|
||||
assert ts.iloc[0] == (datetime.datetime(2021, 1, 1), 220)
|
||||
assert ts.iloc[-1] == (datetime.datetime(2021, 3, 1), 240)
|
||||
|
||||
ts_slice = ts.iloc[0:2]
|
||||
assert isinstance(ts_slice, TimeSeriesCore)
|
||||
assert isinstance(ts_slice, pft.TimeSeriesCore)
|
||||
assert len(ts_slice) == 2
|
||||
|
||||
|
||||
class TestComparativeSlicing:
|
||||
def test_date_gt_daily(self, create_test_data):
|
||||
data = create_test_data(num=300, frequency=pft.AllFrequencies.D)
|
||||
ts = pft.TimeSeries(data, "D")
|
||||
ts_rr = ts.calculate_rolling_returns(return_period_unit="months")
|
||||
assert len(ts_rr) == 269
|
||||
subset = ts_rr[ts_rr.values < 0.1]
|
||||
assert isinstance(subset, pft.TimeSeriesCore)
|
||||
assert subset.frequency == pft.AllFrequencies.D
|
||||
|
||||
def test_date_gt_monthly(self, create_test_data):
|
||||
data = create_test_data(num=60, frequency=pft.AllFrequencies.M)
|
||||
ts = pft.TimeSeries(data, "M")
|
||||
ts_rr = ts.calculate_rolling_returns(return_period_unit="months")
|
||||
assert len(ts_rr) == 59
|
||||
subset = ts_rr[ts_rr.values < 0.1]
|
||||
assert isinstance(subset, pft.TimeSeriesCore)
|
||||
assert subset.frequency == pft.AllFrequencies.M
|
||||
|
||||
|
||||
class TestSetitem:
|
||||
data = [("2021-01-01", 220), ("2021-01-04", 230), ("2021-03-07", 240)]
|
||||
|
||||
def test_setitem(self):
|
||||
ts = TimeSeriesCore(self.data, frequency="M")
|
||||
ts = pft.TimeSeriesCore(self.data, frequency="M")
|
||||
assert len(ts) == 3
|
||||
|
||||
ts["2021-01-02"] = 225
|
||||
@ -195,7 +211,7 @@ class TestSetitem:
|
||||
assert ts["2021-01-02"][1] == 227.6
|
||||
|
||||
def test_errors(self):
|
||||
ts = TimeSeriesCore(self.data, frequency="M")
|
||||
ts = pft.TimeSeriesCore(self.data, frequency="M")
|
||||
with pytest.raises(TypeError):
|
||||
ts["2021-01-03"] = "abc"
|
||||
|
||||
@ -223,25 +239,25 @@ class TestTimeSeriesCoreHeadTail:
|
||||
]
|
||||
|
||||
def test_head(self):
|
||||
ts = TimeSeriesCore(self.data, frequency="M")
|
||||
ts = pft.TimeSeriesCore(self.data, frequency="M")
|
||||
assert len(ts.head()) == 6
|
||||
assert len(ts.head(3)) == 3
|
||||
assert isinstance(ts.head(), TimeSeriesCore)
|
||||
assert isinstance(ts.head(), pft.TimeSeriesCore)
|
||||
head_ts = ts.head(6)
|
||||
assert head_ts.iloc[-1][1] == 270
|
||||
|
||||
def test_tail(self):
|
||||
ts = TimeSeriesCore(self.data, frequency="M")
|
||||
ts = pft.TimeSeriesCore(self.data, frequency="M")
|
||||
assert len(ts.tail()) == 6
|
||||
assert len(ts.tail(8)) == 8
|
||||
assert isinstance(ts.tail(), TimeSeriesCore)
|
||||
assert isinstance(ts.tail(), pft.TimeSeriesCore)
|
||||
tail_ts = ts.tail(6)
|
||||
assert tail_ts.iloc[0][1] == 280
|
||||
|
||||
def test_head_tail(self):
|
||||
ts = TimeSeriesCore(self.data, frequency="M")
|
||||
ts = pft.TimeSeriesCore(self.data, frequency="M")
|
||||
head_tail_ts = ts.head(8).tail(2)
|
||||
assert isinstance(head_tail_ts, TimeSeriesCore)
|
||||
assert isinstance(head_tail_ts, pft.TimeSeriesCore)
|
||||
assert "2021-07-01" in head_tail_ts
|
||||
assert head_tail_ts.iloc[1][1] == 290
|
||||
|
||||
@ -255,7 +271,7 @@ class TestDelitem:
|
||||
]
|
||||
|
||||
def test_deletion(self):
|
||||
ts = TimeSeriesCore(self.data, "M")
|
||||
ts = pft.TimeSeriesCore(self.data, "M")
|
||||
assert len(ts) == 4
|
||||
del ts["2021-03-01"]
|
||||
assert len(ts) == 3
|
||||
@ -281,42 +297,42 @@ class TestTimeSeriesComparisons:
|
||||
]
|
||||
|
||||
def test_number_comparison(self):
|
||||
ts1 = TimeSeriesCore(self.data1, "M")
|
||||
assert isinstance(ts1 > 23, TimeSeriesCore)
|
||||
assert (ts1 > 230).values == Series([0.0, 0.0, 1.0, 1.0], "float")
|
||||
assert (ts1 >= 230).values == Series([0.0, 1.0, 1.0, 1.0], "float")
|
||||
assert (ts1 < 240).values == Series([1.0, 1.0, 0.0, 0.0], "float")
|
||||
assert (ts1 <= 240).values == Series([1.0, 1.0, 1.0, 0.0], "float")
|
||||
assert (ts1 == 240).values == Series([0.0, 0.0, 1.0, 0.0], "float")
|
||||
assert (ts1 != 240).values == Series([1.0, 1.0, 0.0, 1.0], "float")
|
||||
ts1 = pft.TimeSeriesCore(self.data1, "M")
|
||||
assert isinstance(ts1 > 23, pft.TimeSeriesCore)
|
||||
assert (ts1 > 230).values == pft.Series([0.0, 0.0, 1.0, 1.0], "float")
|
||||
assert (ts1 >= 230).values == pft.Series([0.0, 1.0, 1.0, 1.0], "float")
|
||||
assert (ts1 < 240).values == pft.Series([1.0, 1.0, 0.0, 0.0], "float")
|
||||
assert (ts1 <= 240).values == pft.Series([1.0, 1.0, 1.0, 0.0], "float")
|
||||
assert (ts1 == 240).values == pft.Series([0.0, 0.0, 1.0, 0.0], "float")
|
||||
assert (ts1 != 240).values == pft.Series([1.0, 1.0, 0.0, 1.0], "float")
|
||||
|
||||
def test_series_comparison(self):
|
||||
ts1 = TimeSeriesCore(self.data1, "M")
|
||||
ser = Series([240, 210, 240, 270], dtype="int")
|
||||
ts1 = pft.TimeSeriesCore(self.data1, "M")
|
||||
ser = pft.Series([240, 210, 240, 270], dtype="int")
|
||||
|
||||
assert (ts1 > ser).values == Series([0.0, 1.0, 0.0, 0.0], "float")
|
||||
assert (ts1 >= ser).values == Series([0.0, 1.0, 1.0, 0.0], "float")
|
||||
assert (ts1 < ser).values == Series([1.0, 0.0, 0.0, 1.0], "float")
|
||||
assert (ts1 <= ser).values == Series([1.0, 0.0, 1.0, 1.0], "float")
|
||||
assert (ts1 == ser).values == Series([0.0, 0.0, 1.0, 0.0], "float")
|
||||
assert (ts1 != ser).values == Series([1.0, 1.0, 0.0, 1.0], "float")
|
||||
assert (ts1 > ser).values == pft.Series([0.0, 1.0, 0.0, 0.0], "float")
|
||||
assert (ts1 >= ser).values == pft.Series([0.0, 1.0, 1.0, 0.0], "float")
|
||||
assert (ts1 < ser).values == pft.Series([1.0, 0.0, 0.0, 1.0], "float")
|
||||
assert (ts1 <= ser).values == pft.Series([1.0, 0.0, 1.0, 1.0], "float")
|
||||
assert (ts1 == ser).values == pft.Series([0.0, 0.0, 1.0, 0.0], "float")
|
||||
assert (ts1 != ser).values == pft.Series([1.0, 1.0, 0.0, 1.0], "float")
|
||||
|
||||
def test_tsc_comparison(self):
|
||||
ts1 = TimeSeriesCore(self.data1, "M")
|
||||
ts2 = TimeSeriesCore(self.data2, "M")
|
||||
ts1 = pft.TimeSeriesCore(self.data1, "M")
|
||||
ts2 = pft.TimeSeriesCore(self.data2, "M")
|
||||
|
||||
assert (ts1 > ts2).values == Series([0.0, 1.0, 0.0, 0.0], "float")
|
||||
assert (ts1 >= ts2).values == Series([0.0, 1.0, 1.0, 0.0], "float")
|
||||
assert (ts1 < ts2).values == Series([1.0, 0.0, 0.0, 1.0], "float")
|
||||
assert (ts1 <= ts2).values == Series([1.0, 0.0, 1.0, 1.0], "float")
|
||||
assert (ts1 == ts2).values == Series([0.0, 0.0, 1.0, 0.0], "float")
|
||||
assert (ts1 != ts2).values == Series([1.0, 1.0, 0.0, 1.0], "float")
|
||||
assert (ts1 > ts2).values == pft.Series([0.0, 1.0, 0.0, 0.0], "float")
|
||||
assert (ts1 >= ts2).values == pft.Series([0.0, 1.0, 1.0, 0.0], "float")
|
||||
assert (ts1 < ts2).values == pft.Series([1.0, 0.0, 0.0, 1.0], "float")
|
||||
assert (ts1 <= ts2).values == pft.Series([1.0, 0.0, 1.0, 1.0], "float")
|
||||
assert (ts1 == ts2).values == pft.Series([0.0, 0.0, 1.0, 0.0], "float")
|
||||
assert (ts1 != ts2).values == pft.Series([1.0, 1.0, 0.0, 1.0], "float")
|
||||
|
||||
def test_errors(self):
|
||||
ts1 = TimeSeriesCore(self.data1, "M")
|
||||
ts2 = TimeSeriesCore(self.data2, "M")
|
||||
ser = Series([240, 210, 240], dtype="int")
|
||||
ser2 = Series(["2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01"], dtype="date")
|
||||
ts1 = pft.TimeSeriesCore(self.data1, "M")
|
||||
ts2 = pft.TimeSeriesCore(self.data2, "M")
|
||||
ser = pft.Series([240, 210, 240], dtype="int")
|
||||
ser2 = pft.Series(["2021-01-01", "2021-02-01", "2021-03-01", "2021-04-01"], dtype="date")
|
||||
|
||||
del ts2["2021-04-01"]
|
||||
|
||||
@ -345,7 +361,7 @@ class TestTimeSeriesArithmatic:
|
||||
]
|
||||
|
||||
def test_add(self):
|
||||
ts = TimeSeriesCore(self.data, "M")
|
||||
ts = pft.TimeSeriesCore(self.data, "M")
|
||||
ser = ts.values
|
||||
|
||||
num_add_ts = ts + 40
|
||||
@ -365,8 +381,8 @@ class TestTimeSeriesArithmatic:
|
||||
assert ts_add_ts["2021-04-01"][1] == 540
|
||||
|
||||
def test_sub(self):
|
||||
ts = TimeSeriesCore(self.data, "M")
|
||||
ser = Series([20, 30, 40, 50], "number")
|
||||
ts = pft.TimeSeriesCore(self.data, "M")
|
||||
ser = pft.Series([20, 30, 40, 50], "number")
|
||||
|
||||
num_sub_ts = ts - 40
|
||||
assert num_sub_ts["2021-01-01"][1] == 180
|
||||
@ -385,8 +401,8 @@ class TestTimeSeriesArithmatic:
|
||||
assert ts_sub_ts["2021-04-01"][1] == 40
|
||||
|
||||
def test_truediv(self):
|
||||
ts = TimeSeriesCore(self.data, "M")
|
||||
ser = Series([22, 23, 24, 25], "number")
|
||||
ts = pft.TimeSeriesCore(self.data, "M")
|
||||
ser = pft.Series([22, 23, 24, 25], "number")
|
||||
|
||||
num_div_ts = ts / 10
|
||||
assert num_div_ts["2021-01-01"][1] == 22
|
||||
@ -404,8 +420,8 @@ class TestTimeSeriesArithmatic:
|
||||
assert ts_div_ts["2021-04-01"][1] == 10
|
||||
|
||||
def test_floordiv(self):
|
||||
ts = TimeSeriesCore(self.data, "M")
|
||||
ser = Series([22, 23, 24, 25], "number")
|
||||
ts = pft.TimeSeriesCore(self.data, "M")
|
||||
ser = pft.Series([22, 23, 24, 25], "number")
|
||||
|
||||
num_div_ts = ts // 11
|
||||
assert num_div_ts["2021-02-01"][1] == 20
|
||||
|
@ -84,6 +84,84 @@ class TestSharpe:
|
||||
assert round(sharpe_ratio, 4) == 0.3199
|
||||
|
||||
|
||||
class TestSortino:
|
||||
def test_sortino_daily_freq(self, create_test_data):
|
||||
data = create_test_data(num=1305, frequency=pft.AllFrequencies.D, skip_weekends=True)
|
||||
ts = pft.TimeSeries(data, "D")
|
||||
sortino_ratio = pft.sortino_ratio(
|
||||
ts,
|
||||
risk_free_rate=0.06,
|
||||
from_date="2017-02-02",
|
||||
to_date="2021-12-31",
|
||||
return_period_unit="months",
|
||||
return_period_value=1,
|
||||
)
|
||||
assert round(sortino_ratio, 4) == 2.5377
|
||||
|
||||
# sharpe_ratio = pft.sharpe_ratio(
|
||||
# ts,
|
||||
# risk_free_rate=0.06,
|
||||
# from_date="2017-01-09",
|
||||
# to_date="2021-12-31",
|
||||
# return_period_unit="days",
|
||||
# return_period_value=7,
|
||||
# )
|
||||
# assert round(sharpe_ratio, 4) == 1.0701
|
||||
|
||||
# sharpe_ratio = pft.sharpe_ratio(
|
||||
# ts,
|
||||
# risk_free_rate=0.06,
|
||||
# from_date="2018-01-02",
|
||||
# to_date="2021-12-31",
|
||||
# return_period_unit="years",
|
||||
# return_period_value=1,
|
||||
# )
|
||||
# assert round(sharpe_ratio, 4) == 1.4374
|
||||
|
||||
# sharpe_ratio = pft.sharpe_ratio(
|
||||
# ts,
|
||||
# risk_free_rate=0.06,
|
||||
# from_date="2017-07-03",
|
||||
# to_date="2021-12-31",
|
||||
# return_period_unit="months",
|
||||
# return_period_value=6,
|
||||
# )
|
||||
# assert round(sharpe_ratio, 4) == 0.8401
|
||||
|
||||
# def test_sharpe_weekly_freq(self, create_test_data):
|
||||
# data = create_test_data(num=261, frequency=pft.AllFrequencies.W, mu=0.6, sigma=0.7)
|
||||
# ts = pft.TimeSeries(data, "W")
|
||||
# sharpe_ratio = pft.sharpe_ratio(
|
||||
# ts,
|
||||
# risk_free_rate=0.052,
|
||||
# from_date="2017-01-08",
|
||||
# to_date="2021-12-31",
|
||||
# return_period_unit="days",
|
||||
# return_period_value=7,
|
||||
# )
|
||||
# assert round(sharpe_ratio, 4) == 0.4533
|
||||
|
||||
# sharpe_ratio = pft.sharpe_ratio(
|
||||
# ts,
|
||||
# risk_free_rate=0.052,
|
||||
# from_date="2017-02-05",
|
||||
# to_date="2021-12-31",
|
||||
# return_period_unit="months",
|
||||
# return_period_value=1,
|
||||
# )
|
||||
# assert round(sharpe_ratio, 4) == 0.4898
|
||||
|
||||
# sharpe_ratio = pft.sharpe_ratio(
|
||||
# ts,
|
||||
# risk_free_rate=0.052,
|
||||
# from_date="2018-01-01",
|
||||
# to_date="2021-12-31",
|
||||
# return_period_unit="months",
|
||||
# return_period_value=12,
|
||||
# )
|
||||
# assert round(sharpe_ratio, 4) == 0.3199
|
||||
|
||||
|
||||
class TestBeta:
|
||||
def test_beta_daily_freq(self, create_test_data):
|
||||
market_data = create_test_data(num=3600, frequency=pft.AllFrequencies.D)
|
||||
|
Loading…
Reference in New Issue
Block a user