Compare commits

...

5 Commits

Author SHA1 Message Date
56af7c33aa ffill now fills based on frequency
create date series supports eomonth parameter
2022-02-19 23:03:41 +05:30
01a05d66a2 Split core functions & classes into separate file 2022-02-19 23:03:00 +05:30
8fdaa25a1e handled slicing in getitem
Also changed class representation to list[tuple]
2022-02-19 16:47:53 +05:30
2790106790 reverted more unitended changes 2022-02-19 15:43:52 +05:30
c3928f756e reverted unitended changes 2022-02-19 15:42:35 +05:30
2 changed files with 236 additions and 197 deletions

186
fincal/core.py Normal file
View File

@ -0,0 +1,186 @@
import datetime
from dataclasses import dataclass
from typing import Dict, Iterable, List, Literal, Tuple, Union
@dataclass
class Options:
date_format: str = '%Y-%m-%d'
closest: str = 'before' # after
@dataclass(frozen=True)
class Frequency:
name: str
freq_type: str
value: int
days: int
class AllFrequencies:
D = Frequency('daily', 'days', 1, 1)
W = Frequency('weekly', 'days', 7, 7)
M = Frequency('monthly', 'months', 1, 30)
Q = Frequency('quarterly', 'months', 3, 91)
H = Frequency('half-yearly', 'months', 6, 182)
Y = Frequency('annual', 'years', 1, 365)
def _preprocess_timeseries(
data: Union[
List[Iterable[Union[str, datetime.datetime, float]]],
List[Dict[str, Union[float, datetime.datetime]]],
List[Dict[Union[str, datetime.datetime], float]],
Dict[Union[str, datetime.datetime], float]
],
date_format: str
) -> List[Tuple[datetime.datetime, float]]:
"""Converts any type of list to the correct type"""
if isinstance(data, list):
if isinstance(data[0], dict):
if len(data[0].keys()) == 2:
current_data = [tuple(i.values()) for i in data]
elif len(data[0].keys()) == 1:
current_data = [tuple(*i.items()) for i in data]
else:
raise TypeError("Could not parse the data")
current_data = _preprocess_timeseries(current_data, date_format)
elif isinstance(data[0], Iterable):
if isinstance(data[0][0], str):
current_data = []
for i in data:
row = datetime.datetime.strptime(i[0], date_format), i[1]
current_data.append(row)
elif isinstance(data[0][0], datetime.datetime):
current_data = [(i, j) for i, j in data]
else:
raise TypeError("Could not parse the data")
else:
raise TypeError("Could not parse the data")
elif isinstance(data, dict):
current_data = [(k, v) for k, v in data.items()]
current_data = _preprocess_timeseries(current_data, date_format)
else:
raise TypeError("Could not parse the data")
current_data.sort()
return current_data
def _preprocess_match_options(as_on_match: str, prior_match: str, closest: str) -> datetime.timedelta:
"""Checks the arguments and returns appropriate timedelta objects"""
deltas = {'exact': 0, 'previous': -1, 'next': 1}
if closest not in deltas.keys():
raise ValueError(f"Invalid closest argument: {closest}")
as_on_match = closest if as_on_match == 'closest' else as_on_match
prior_match = closest if prior_match == 'closest' else prior_match
if as_on_match in deltas.keys():
as_on_delta = datetime.timedelta(days=deltas[as_on_match])
else:
raise ValueError(f"Invalid as_on_match argument: {as_on_match}")
if prior_match in deltas.keys():
prior_delta = datetime.timedelta(days=deltas[prior_match])
else:
raise ValueError(f"Invalid prior_match argument: {prior_match}")
return as_on_delta, prior_delta
class TimeSeriesCore:
"""Defines the core building blocks of a TimeSeries object"""
def __init__(
self,
data: List[Iterable],
date_format: str = "%Y-%m-%d",
frequency=Literal['D', 'W', 'M', 'Q', 'H', 'Y']
):
"""Instantiate a TimeSeries object
Parameters
----------
data : List[tuple]
Time Series data in the form of list of tuples.
The first element of each tuple should be a date and second element should be a value.
date_format : str, optional, default "%Y-%m-%d"
Specify the format of the date
Required only if the first argument of tuples is a string. Otherwise ignored.
frequency : str, optional, default "infer"
The frequency of the time series. Default is infer.
The class will try to infer the frequency automatically and adjust to the closest member.
Note that inferring frequencies can fail if the data is too irregular.
Valid values are {D, W, M, Q, H, Y}
"""
data = _preprocess_timeseries(data, date_format=date_format)
self.time_series = dict(data)
self.dates = set(list(self.time_series))
if len(self.dates) != len(data):
print("Warning: The input data contains duplicate dates which have been ignored.")
self.start_date = list(self.time_series)[0]
self.end_date = list(self.time_series)[-1]
self.frequency = getattr(AllFrequencies, frequency)
def __repr__(self):
if len(self.time_series) > 6:
printable_data_1 = list(self.time_series)[:3]
printable_data_2 = list(self.time_series)[-3:]
printable_str = "TimeSeries([{}\n\t...\n\t{}])".format(
',\n\t'.join([str((i, self.time_series[i])) for i in printable_data_1]),
',\n\t'.join([str((i, self.time_series[i])) for i in printable_data_2])
)
else:
printable_data = self.time_series
printable_str = "TimeSeries([{}])".format(',\n\t'.join(
[str((i, self.time_series[i])) for i in printable_data]))
return printable_str
def __str__(self):
if len(self.time_series) > 6:
printable_data_1 = list(self.time_series)[:3]
printable_data_2 = list(self.time_series)[-3:]
printable_str = "[{}\n ...\n {}]".format(
',\n '.join([str((i, self.time_series[i])) for i in printable_data_1]),
',\n '.join([str((i, self.time_series[i])) for i in printable_data_2])
)
else:
printable_data = self.time_series
printable_str = "[{}]".format(',\n '.join([str((i, self.time_series[i])) for i in printable_data]))
return printable_str
def __getitem__(self, n):
all_keys = list(self.time_series.keys())
if isinstance(n, int):
keys = [all_keys[n]]
else:
keys = all_keys[n]
item = [(key, self.time_series[key]) for key in keys]
if len(item) == 1:
return item[0]
return item
def __len__(self):
return len(self.time_series.keys())
def head(self, n: int = 6):
keys = list(self.time_series.keys())
keys = keys[:n]
result = [(key, self.time_series[key]) for key in keys]
return result
def tail(self, n: int = 6):
keys = list(self.time_series.keys())
keys = keys[-n:]
result = [(key, self.time_series[key]) for key in keys]
return result

View File

@ -1,205 +1,37 @@
from __future__ import annotations
import datetime
from dataclasses import dataclass
from typing import Dict, Iterable, List, Literal, Tuple, Union
from typing import List, Union
from dateutil.relativedelta import relativedelta
@dataclass
class Options:
date_format: str = '%Y-%m-%d'
closest: str = 'before' # after
@dataclass(frozen=True)
class Frequency:
name: str
freq_type: str
value: int
days: int
class AllFrequencies:
D = Frequency('daily', 'days', 1, 1)
W = Frequency('weekly', 'days', 7, 7)
M = Frequency('monthly', 'months', 1, 30)
Q = Frequency('quarterly', 'months', 3, 91)
H = Frequency('half-yearly', 'months', 6, 182)
Y = Frequency('annual', 'years', 1, 365)
from .core import AllFrequencies, Frequency, TimeSeriesCore, _preprocess_match_options
def create_date_series(
start_date: datetime.datetime,
end_date: datetime.datetime,
frequency: Frequency
start_date: datetime.datetime, end_date: datetime.datetime, frequency: Frequency, eomonth: bool = False
) -> List[datetime.datetime]:
"""Creates a date series using a frequency"""
print(f"{start_date=}, {end_date=}")
datediff = (end_date - start_date).days/frequency.days+1
if eomonth and frequency.days < AllFrequencies.M.days:
raise ValueError(f"eomonth cannot be set to True if frequency is higher than {AllFrequencies.M.name}")
datediff = (end_date - start_date).days / frequency.days + 1
dates = []
for i in range(0, int(datediff)):
diff = {frequency.freq_type: frequency.value*i}
dates.append(start_date + relativedelta(**diff))
diff = {frequency.freq_type: frequency.value * i}
date = start_date + relativedelta(**diff)
if eomonth:
if date.month == 12:
date = date.replace(day=31)
else:
date = date.replace(day=1).replace(month=date.month+1) - relativedelta(days=1)
dates.append(date)
return dates
def _preprocess_timeseries(
data: Union[
List[Iterable[Union[str, datetime.datetime, float]]],
List[Dict[str, Union[float, datetime.datetime]]],
List[Dict[Union[str, datetime.datetime], float]],
Dict[Union[str, datetime.datetime], float]
],
date_format: str
) -> List[Tuple[datetime.datetime, float]]:
"""Converts any type of list to the correct type"""
if isinstance(data, list):
if isinstance(data[0], dict):
if len(data[0].keys()) == 2:
current_data = [tuple(i.values()) for i in data]
elif len(data[0].keys()) == 1:
current_data = [tuple(*i.items()) for i in data]
else:
raise TypeError("Could not parse the data")
current_data = _preprocess_timeseries(current_data, date_format)
elif isinstance(data[0], Iterable):
if isinstance(data[0][0], str):
current_data = []
for i in data:
row = datetime.datetime.strptime(i[0], date_format), i[1]
current_data.append(row)
elif isinstance(data[0][0], datetime.datetime):
current_data = [(i, j) for i, j in data]
else:
raise TypeError("Could not parse the data")
else:
raise TypeError("Could not parse the data")
elif isinstance(data, dict):
current_data = [(k, v) for k, v in data.items()]
current_data = _preprocess_timeseries(current_data, date_format)
else:
raise TypeError("Could not parse the data")
current_data.sort()
return current_data
def _preprocess_match_options(as_on_match: str, prior_match: str, closest: str) -> datetime.timedelta:
"""Checks the arguments and returns appropriate timedelta objects"""
deltas = {'exact': 0, 'previous': -1, 'next': 1}
if closest not in deltas.keys():
raise ValueError(f"Invalid closest argument: {closest}")
as_on_match = closest if as_on_match == 'closest' else as_on_match
prior_match = closest if prior_match == 'closest' else prior_match
if as_on_match in deltas.keys():
as_on_delta = datetime.timedelta(days=deltas[as_on_match])
else:
raise ValueError(f"Invalid as_on_match argument: {as_on_match}")
if prior_match in deltas.keys():
prior_delta = datetime.timedelta(days=deltas[prior_match])
else:
raise ValueError(f"Invalid prior_match argument: {prior_match}")
return as_on_delta, prior_delta
class TimeSeriesCore:
"""Defines the core building blocks of a TimeSeries object"""
def __init__(
self,
data: List[Iterable],
date_format: str = "%Y-%m-%d",
frequency=Literal['D', 'W', 'M', 'Q', 'H', 'Y']
):
"""Instantiate a TimeSeries object
Parameters
----------
data : List[tuple]
Time Series data in the form of list of tuples.
The first element of each tuple should be a date and second element should be a value.
date_format : str, optional, default "%Y-%m-%d"
Specify the format of the date
Required only if the first argument of tuples is a string. Otherwise ignored.
frequency : str, optional, default "infer"
The frequency of the time series. Default is infer.
The class will try to infer the frequency automatically and adjust to the closest member.
Note that inferring frequencies can fail if the data is too irregular.
Valid values are {D, W, M, Q, H, Y}
"""
data = _preprocess_timeseries(data, date_format=date_format)
self.time_series = dict(data)
self.dates = set(list(self.time_series))
if len(self.dates) != len(data):
print("Warning: The input data contains duplicate dates which have been ignored.")
self.start_date = list(self.time_series)[0]
self.end_date = list(self.time_series)[-1]
self.frequency = getattr(AllFrequencies, frequency)
def __repr__(self):
if len(self.time_series) > 6:
printable_data_1 = list(self.time_series)[:3]
printable_data_2 = list(self.time_series)[-3:]
printable_str = "TimeSeries([{}\n\t...\n\t{}])".format(
',\n\t'.join([str({i: self.time_series[i]}) for i in printable_data_1]),
',\n\t'.join([str({i: self.time_series[i]}) for i in printable_data_2])
)
else:
printable_data = self.time_series
printable_str = "TimeSeries([{}])".format(',\n\t'.join(
[str({i: self.time_series[i]}) for i in printable_data]))
return printable_str
def __str__(self):
if len(self.time_series) > 6:
printable_data_1 = list(self.time_series)[:3]
printable_data_2 = list(self.time_series)[-3:]
printable_str = "[{}\n ...\n {}]".format(
',\n '.join([str({i: self.time_series[i]}) for i in printable_data_1]),
',\n '.join([str({i: self.time_series[i]}) for i in printable_data_2])
)
else:
printable_data = self.time_series
printable_str = "[{}]".format(',\n '.join([str({i: self.time_series[i]}) for i in printable_data]))
return printable_str
def __getitem__(self, n):
keys = list(self.time_series.keys())
key = keys[n]
item = self.time_series[key]
return key, item
def __len__(self):
return len(self.time_series.keys())
def head(self, n: int = 6):
keys = list(self.time_series.keys())
keys = keys[:n]
result = [(key, self.time_series[key]) for key in keys]
return result
def tail(self, n: int = 6):
keys = list(self.time_series.keys())
keys = keys[-n:]
result = [(key, self.time_series[key]) for key in keys]
return result
class TimeSeries(TimeSeriesCore):
"""Container for TimeSeries objects"""
@ -210,12 +42,27 @@ class TimeSeries(TimeSeriesCore):
res_string = "First date: {}\nLast date: {}\nNumber of rows: {}"
return res_string.format(self.start_date, self.end_date, total_dates)
def ffill(self, inplace=False):
num_days = (self.end_date - self.start_date).days + 1
def ffill(self, inplace: bool = False, limit: int = None) -> Union[TimeSeries, None]:
"""Forward fill missing dates in the time series
Parameters
----------
inplace : bool
Modify the time-series data in place and return None.
limit : int, optional
Maximum number of periods to forward fill
Returns
-------
Returns a TimeSeries object if inplace is False, otherwise None
"""
eomonth = True if self.frequency.days >= AllFrequencies.M.days else False
dates_to_fill = create_date_series(self.start_date, self.end_date, self.frequency, eomonth)
new_ts = dict()
for i in range(num_days):
cur_date = self.start_date + datetime.timedelta(days=i)
for cur_date in dates_to_fill:
try:
cur_val = self.time_series[cur_date]
except KeyError:
@ -249,11 +96,11 @@ class TimeSeries(TimeSeriesCore):
def calculate_returns(
self,
as_on: datetime.datetime,
as_on_match: str = 'closest',
prior_match: str = 'closest',
as_on_match: str = "closest",
prior_match: str = "closest",
closest: str = "previous",
compounding: bool = True,
years: int = 1
years: int = 1,
) -> float:
"""Method to calculate returns for a certain time-period as on a particular date
@ -322,8 +169,8 @@ class TimeSeries(TimeSeriesCore):
from_date: datetime.date,
to_date: datetime.date,
frequency: str = "D",
as_on_match: str = 'closest',
prior_match: str = 'closest',
as_on_match: str = "closest",
prior_match: str = "closest",
closest: str = "previous",
compounding: bool = True,
years: int = 1,
@ -337,14 +184,20 @@ class TimeSeries(TimeSeriesCore):
rolling_returns = []
for i in dates:
returns = self.calculate_returns(as_on=i, compounding=compounding, years=years, as_on_match=as_on_match,
prior_match=prior_match, closest=closest)
returns = self.calculate_returns(
as_on=i,
compounding=compounding,
years=years,
as_on_match=as_on_match,
prior_match=prior_match,
closest=closest,
)
rolling_returns.append((i, returns))
self.rolling_returns = rolling_returns
return self.rolling_returns
if __name__ == '__main__':
if __name__ == "__main__":
date_series = [
datetime.datetime(2020, 1, 1),
datetime.datetime(2020, 1, 2),