Compare commits
5 Commits
6851fedbca
...
56af7c33aa
Author | SHA1 | Date | |
---|---|---|---|
56af7c33aa | |||
01a05d66a2 | |||
8fdaa25a1e | |||
2790106790 | |||
c3928f756e |
186
fincal/core.py
Normal file
186
fincal/core.py
Normal file
@ -0,0 +1,186 @@
|
||||
import datetime
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Iterable, List, Literal, Tuple, Union
|
||||
|
||||
|
||||
@dataclass
|
||||
class Options:
|
||||
date_format: str = '%Y-%m-%d'
|
||||
closest: str = 'before' # after
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class Frequency:
|
||||
name: str
|
||||
freq_type: str
|
||||
value: int
|
||||
days: int
|
||||
|
||||
|
||||
class AllFrequencies:
|
||||
D = Frequency('daily', 'days', 1, 1)
|
||||
W = Frequency('weekly', 'days', 7, 7)
|
||||
M = Frequency('monthly', 'months', 1, 30)
|
||||
Q = Frequency('quarterly', 'months', 3, 91)
|
||||
H = Frequency('half-yearly', 'months', 6, 182)
|
||||
Y = Frequency('annual', 'years', 1, 365)
|
||||
|
||||
|
||||
def _preprocess_timeseries(
|
||||
data: Union[
|
||||
List[Iterable[Union[str, datetime.datetime, float]]],
|
||||
List[Dict[str, Union[float, datetime.datetime]]],
|
||||
List[Dict[Union[str, datetime.datetime], float]],
|
||||
Dict[Union[str, datetime.datetime], float]
|
||||
],
|
||||
date_format: str
|
||||
) -> List[Tuple[datetime.datetime, float]]:
|
||||
"""Converts any type of list to the correct type"""
|
||||
|
||||
if isinstance(data, list):
|
||||
if isinstance(data[0], dict):
|
||||
if len(data[0].keys()) == 2:
|
||||
current_data = [tuple(i.values()) for i in data]
|
||||
elif len(data[0].keys()) == 1:
|
||||
current_data = [tuple(*i.items()) for i in data]
|
||||
else:
|
||||
raise TypeError("Could not parse the data")
|
||||
current_data = _preprocess_timeseries(current_data, date_format)
|
||||
|
||||
elif isinstance(data[0], Iterable):
|
||||
if isinstance(data[0][0], str):
|
||||
current_data = []
|
||||
for i in data:
|
||||
row = datetime.datetime.strptime(i[0], date_format), i[1]
|
||||
current_data.append(row)
|
||||
elif isinstance(data[0][0], datetime.datetime):
|
||||
current_data = [(i, j) for i, j in data]
|
||||
else:
|
||||
raise TypeError("Could not parse the data")
|
||||
else:
|
||||
raise TypeError("Could not parse the data")
|
||||
|
||||
elif isinstance(data, dict):
|
||||
current_data = [(k, v) for k, v in data.items()]
|
||||
current_data = _preprocess_timeseries(current_data, date_format)
|
||||
|
||||
else:
|
||||
raise TypeError("Could not parse the data")
|
||||
current_data.sort()
|
||||
return current_data
|
||||
|
||||
|
||||
def _preprocess_match_options(as_on_match: str, prior_match: str, closest: str) -> datetime.timedelta:
|
||||
"""Checks the arguments and returns appropriate timedelta objects"""
|
||||
|
||||
deltas = {'exact': 0, 'previous': -1, 'next': 1}
|
||||
if closest not in deltas.keys():
|
||||
raise ValueError(f"Invalid closest argument: {closest}")
|
||||
|
||||
as_on_match = closest if as_on_match == 'closest' else as_on_match
|
||||
prior_match = closest if prior_match == 'closest' else prior_match
|
||||
|
||||
if as_on_match in deltas.keys():
|
||||
as_on_delta = datetime.timedelta(days=deltas[as_on_match])
|
||||
else:
|
||||
raise ValueError(f"Invalid as_on_match argument: {as_on_match}")
|
||||
|
||||
if prior_match in deltas.keys():
|
||||
prior_delta = datetime.timedelta(days=deltas[prior_match])
|
||||
else:
|
||||
raise ValueError(f"Invalid prior_match argument: {prior_match}")
|
||||
|
||||
return as_on_delta, prior_delta
|
||||
|
||||
|
||||
class TimeSeriesCore:
|
||||
"""Defines the core building blocks of a TimeSeries object"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
data: List[Iterable],
|
||||
date_format: str = "%Y-%m-%d",
|
||||
frequency=Literal['D', 'W', 'M', 'Q', 'H', 'Y']
|
||||
):
|
||||
"""Instantiate a TimeSeries object
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : List[tuple]
|
||||
Time Series data in the form of list of tuples.
|
||||
The first element of each tuple should be a date and second element should be a value.
|
||||
|
||||
date_format : str, optional, default "%Y-%m-%d"
|
||||
Specify the format of the date
|
||||
Required only if the first argument of tuples is a string. Otherwise ignored.
|
||||
|
||||
frequency : str, optional, default "infer"
|
||||
The frequency of the time series. Default is infer.
|
||||
The class will try to infer the frequency automatically and adjust to the closest member.
|
||||
Note that inferring frequencies can fail if the data is too irregular.
|
||||
Valid values are {D, W, M, Q, H, Y}
|
||||
"""
|
||||
|
||||
data = _preprocess_timeseries(data, date_format=date_format)
|
||||
|
||||
self.time_series = dict(data)
|
||||
self.dates = set(list(self.time_series))
|
||||
if len(self.dates) != len(data):
|
||||
print("Warning: The input data contains duplicate dates which have been ignored.")
|
||||
self.start_date = list(self.time_series)[0]
|
||||
self.end_date = list(self.time_series)[-1]
|
||||
self.frequency = getattr(AllFrequencies, frequency)
|
||||
|
||||
def __repr__(self):
|
||||
if len(self.time_series) > 6:
|
||||
printable_data_1 = list(self.time_series)[:3]
|
||||
printable_data_2 = list(self.time_series)[-3:]
|
||||
printable_str = "TimeSeries([{}\n\t...\n\t{}])".format(
|
||||
',\n\t'.join([str((i, self.time_series[i])) for i in printable_data_1]),
|
||||
',\n\t'.join([str((i, self.time_series[i])) for i in printable_data_2])
|
||||
)
|
||||
else:
|
||||
printable_data = self.time_series
|
||||
printable_str = "TimeSeries([{}])".format(',\n\t'.join(
|
||||
[str((i, self.time_series[i])) for i in printable_data]))
|
||||
return printable_str
|
||||
|
||||
def __str__(self):
|
||||
if len(self.time_series) > 6:
|
||||
printable_data_1 = list(self.time_series)[:3]
|
||||
printable_data_2 = list(self.time_series)[-3:]
|
||||
printable_str = "[{}\n ...\n {}]".format(
|
||||
',\n '.join([str((i, self.time_series[i])) for i in printable_data_1]),
|
||||
',\n '.join([str((i, self.time_series[i])) for i in printable_data_2])
|
||||
)
|
||||
else:
|
||||
printable_data = self.time_series
|
||||
printable_str = "[{}]".format(',\n '.join([str((i, self.time_series[i])) for i in printable_data]))
|
||||
return printable_str
|
||||
|
||||
def __getitem__(self, n):
|
||||
all_keys = list(self.time_series.keys())
|
||||
if isinstance(n, int):
|
||||
keys = [all_keys[n]]
|
||||
else:
|
||||
keys = all_keys[n]
|
||||
item = [(key, self.time_series[key]) for key in keys]
|
||||
if len(item) == 1:
|
||||
return item[0]
|
||||
|
||||
return item
|
||||
|
||||
def __len__(self):
|
||||
return len(self.time_series.keys())
|
||||
|
||||
def head(self, n: int = 6):
|
||||
keys = list(self.time_series.keys())
|
||||
keys = keys[:n]
|
||||
result = [(key, self.time_series[key]) for key in keys]
|
||||
return result
|
||||
|
||||
def tail(self, n: int = 6):
|
||||
keys = list(self.time_series.keys())
|
||||
keys = keys[-n:]
|
||||
result = [(key, self.time_series[key]) for key in keys]
|
||||
return result
|
243
fincal/fincal.py
243
fincal/fincal.py
@ -1,205 +1,37 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import datetime
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Iterable, List, Literal, Tuple, Union
|
||||
from typing import List, Union
|
||||
|
||||
from dateutil.relativedelta import relativedelta
|
||||
|
||||
|
||||
@dataclass
|
||||
class Options:
|
||||
date_format: str = '%Y-%m-%d'
|
||||
closest: str = 'before' # after
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class Frequency:
|
||||
name: str
|
||||
freq_type: str
|
||||
value: int
|
||||
days: int
|
||||
|
||||
|
||||
class AllFrequencies:
|
||||
D = Frequency('daily', 'days', 1, 1)
|
||||
W = Frequency('weekly', 'days', 7, 7)
|
||||
M = Frequency('monthly', 'months', 1, 30)
|
||||
Q = Frequency('quarterly', 'months', 3, 91)
|
||||
H = Frequency('half-yearly', 'months', 6, 182)
|
||||
Y = Frequency('annual', 'years', 1, 365)
|
||||
from .core import AllFrequencies, Frequency, TimeSeriesCore, _preprocess_match_options
|
||||
|
||||
|
||||
def create_date_series(
|
||||
start_date: datetime.datetime,
|
||||
end_date: datetime.datetime,
|
||||
frequency: Frequency
|
||||
start_date: datetime.datetime, end_date: datetime.datetime, frequency: Frequency, eomonth: bool = False
|
||||
) -> List[datetime.datetime]:
|
||||
"""Creates a date series using a frequency"""
|
||||
|
||||
print(f"{start_date=}, {end_date=}")
|
||||
if eomonth and frequency.days < AllFrequencies.M.days:
|
||||
raise ValueError(f"eomonth cannot be set to True if frequency is higher than {AllFrequencies.M.name}")
|
||||
|
||||
datediff = (end_date - start_date).days / frequency.days + 1
|
||||
dates = []
|
||||
|
||||
for i in range(0, int(datediff)):
|
||||
diff = {frequency.freq_type: frequency.value * i}
|
||||
dates.append(start_date + relativedelta(**diff))
|
||||
date = start_date + relativedelta(**diff)
|
||||
if eomonth:
|
||||
if date.month == 12:
|
||||
date = date.replace(day=31)
|
||||
else:
|
||||
date = date.replace(day=1).replace(month=date.month+1) - relativedelta(days=1)
|
||||
dates.append(date)
|
||||
|
||||
return dates
|
||||
|
||||
|
||||
def _preprocess_timeseries(
|
||||
data: Union[
|
||||
List[Iterable[Union[str, datetime.datetime, float]]],
|
||||
List[Dict[str, Union[float, datetime.datetime]]],
|
||||
List[Dict[Union[str, datetime.datetime], float]],
|
||||
Dict[Union[str, datetime.datetime], float]
|
||||
],
|
||||
date_format: str
|
||||
) -> List[Tuple[datetime.datetime, float]]:
|
||||
"""Converts any type of list to the correct type"""
|
||||
|
||||
if isinstance(data, list):
|
||||
if isinstance(data[0], dict):
|
||||
if len(data[0].keys()) == 2:
|
||||
current_data = [tuple(i.values()) for i in data]
|
||||
elif len(data[0].keys()) == 1:
|
||||
current_data = [tuple(*i.items()) for i in data]
|
||||
else:
|
||||
raise TypeError("Could not parse the data")
|
||||
current_data = _preprocess_timeseries(current_data, date_format)
|
||||
|
||||
elif isinstance(data[0], Iterable):
|
||||
if isinstance(data[0][0], str):
|
||||
current_data = []
|
||||
for i in data:
|
||||
row = datetime.datetime.strptime(i[0], date_format), i[1]
|
||||
current_data.append(row)
|
||||
elif isinstance(data[0][0], datetime.datetime):
|
||||
current_data = [(i, j) for i, j in data]
|
||||
else:
|
||||
raise TypeError("Could not parse the data")
|
||||
else:
|
||||
raise TypeError("Could not parse the data")
|
||||
|
||||
elif isinstance(data, dict):
|
||||
current_data = [(k, v) for k, v in data.items()]
|
||||
current_data = _preprocess_timeseries(current_data, date_format)
|
||||
|
||||
else:
|
||||
raise TypeError("Could not parse the data")
|
||||
current_data.sort()
|
||||
return current_data
|
||||
|
||||
|
||||
def _preprocess_match_options(as_on_match: str, prior_match: str, closest: str) -> datetime.timedelta:
|
||||
"""Checks the arguments and returns appropriate timedelta objects"""
|
||||
|
||||
deltas = {'exact': 0, 'previous': -1, 'next': 1}
|
||||
if closest not in deltas.keys():
|
||||
raise ValueError(f"Invalid closest argument: {closest}")
|
||||
|
||||
as_on_match = closest if as_on_match == 'closest' else as_on_match
|
||||
prior_match = closest if prior_match == 'closest' else prior_match
|
||||
|
||||
if as_on_match in deltas.keys():
|
||||
as_on_delta = datetime.timedelta(days=deltas[as_on_match])
|
||||
else:
|
||||
raise ValueError(f"Invalid as_on_match argument: {as_on_match}")
|
||||
|
||||
if prior_match in deltas.keys():
|
||||
prior_delta = datetime.timedelta(days=deltas[prior_match])
|
||||
else:
|
||||
raise ValueError(f"Invalid prior_match argument: {prior_match}")
|
||||
|
||||
return as_on_delta, prior_delta
|
||||
|
||||
|
||||
class TimeSeriesCore:
|
||||
"""Defines the core building blocks of a TimeSeries object"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
data: List[Iterable],
|
||||
date_format: str = "%Y-%m-%d",
|
||||
frequency=Literal['D', 'W', 'M', 'Q', 'H', 'Y']
|
||||
):
|
||||
"""Instantiate a TimeSeries object
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : List[tuple]
|
||||
Time Series data in the form of list of tuples.
|
||||
The first element of each tuple should be a date and second element should be a value.
|
||||
|
||||
date_format : str, optional, default "%Y-%m-%d"
|
||||
Specify the format of the date
|
||||
Required only if the first argument of tuples is a string. Otherwise ignored.
|
||||
|
||||
frequency : str, optional, default "infer"
|
||||
The frequency of the time series. Default is infer.
|
||||
The class will try to infer the frequency automatically and adjust to the closest member.
|
||||
Note that inferring frequencies can fail if the data is too irregular.
|
||||
Valid values are {D, W, M, Q, H, Y}
|
||||
"""
|
||||
|
||||
data = _preprocess_timeseries(data, date_format=date_format)
|
||||
|
||||
self.time_series = dict(data)
|
||||
self.dates = set(list(self.time_series))
|
||||
if len(self.dates) != len(data):
|
||||
print("Warning: The input data contains duplicate dates which have been ignored.")
|
||||
self.start_date = list(self.time_series)[0]
|
||||
self.end_date = list(self.time_series)[-1]
|
||||
self.frequency = getattr(AllFrequencies, frequency)
|
||||
|
||||
def __repr__(self):
|
||||
if len(self.time_series) > 6:
|
||||
printable_data_1 = list(self.time_series)[:3]
|
||||
printable_data_2 = list(self.time_series)[-3:]
|
||||
printable_str = "TimeSeries([{}\n\t...\n\t{}])".format(
|
||||
',\n\t'.join([str({i: self.time_series[i]}) for i in printable_data_1]),
|
||||
',\n\t'.join([str({i: self.time_series[i]}) for i in printable_data_2])
|
||||
)
|
||||
else:
|
||||
printable_data = self.time_series
|
||||
printable_str = "TimeSeries([{}])".format(',\n\t'.join(
|
||||
[str({i: self.time_series[i]}) for i in printable_data]))
|
||||
return printable_str
|
||||
|
||||
def __str__(self):
|
||||
if len(self.time_series) > 6:
|
||||
printable_data_1 = list(self.time_series)[:3]
|
||||
printable_data_2 = list(self.time_series)[-3:]
|
||||
printable_str = "[{}\n ...\n {}]".format(
|
||||
',\n '.join([str({i: self.time_series[i]}) for i in printable_data_1]),
|
||||
',\n '.join([str({i: self.time_series[i]}) for i in printable_data_2])
|
||||
)
|
||||
else:
|
||||
printable_data = self.time_series
|
||||
printable_str = "[{}]".format(',\n '.join([str({i: self.time_series[i]}) for i in printable_data]))
|
||||
return printable_str
|
||||
|
||||
def __getitem__(self, n):
|
||||
keys = list(self.time_series.keys())
|
||||
key = keys[n]
|
||||
item = self.time_series[key]
|
||||
return key, item
|
||||
|
||||
def __len__(self):
|
||||
return len(self.time_series.keys())
|
||||
|
||||
def head(self, n: int = 6):
|
||||
keys = list(self.time_series.keys())
|
||||
keys = keys[:n]
|
||||
result = [(key, self.time_series[key]) for key in keys]
|
||||
return result
|
||||
|
||||
def tail(self, n: int = 6):
|
||||
keys = list(self.time_series.keys())
|
||||
keys = keys[-n:]
|
||||
result = [(key, self.time_series[key]) for key in keys]
|
||||
return result
|
||||
|
||||
|
||||
class TimeSeries(TimeSeriesCore):
|
||||
"""Container for TimeSeries objects"""
|
||||
|
||||
@ -210,12 +42,27 @@ class TimeSeries(TimeSeriesCore):
|
||||
res_string = "First date: {}\nLast date: {}\nNumber of rows: {}"
|
||||
return res_string.format(self.start_date, self.end_date, total_dates)
|
||||
|
||||
def ffill(self, inplace=False):
|
||||
num_days = (self.end_date - self.start_date).days + 1
|
||||
def ffill(self, inplace: bool = False, limit: int = None) -> Union[TimeSeries, None]:
|
||||
"""Forward fill missing dates in the time series
|
||||
|
||||
Parameters
|
||||
----------
|
||||
inplace : bool
|
||||
Modify the time-series data in place and return None.
|
||||
|
||||
limit : int, optional
|
||||
Maximum number of periods to forward fill
|
||||
|
||||
Returns
|
||||
-------
|
||||
Returns a TimeSeries object if inplace is False, otherwise None
|
||||
"""
|
||||
|
||||
eomonth = True if self.frequency.days >= AllFrequencies.M.days else False
|
||||
dates_to_fill = create_date_series(self.start_date, self.end_date, self.frequency, eomonth)
|
||||
|
||||
new_ts = dict()
|
||||
for i in range(num_days):
|
||||
cur_date = self.start_date + datetime.timedelta(days=i)
|
||||
for cur_date in dates_to_fill:
|
||||
try:
|
||||
cur_val = self.time_series[cur_date]
|
||||
except KeyError:
|
||||
@ -249,11 +96,11 @@ class TimeSeries(TimeSeriesCore):
|
||||
def calculate_returns(
|
||||
self,
|
||||
as_on: datetime.datetime,
|
||||
as_on_match: str = 'closest',
|
||||
prior_match: str = 'closest',
|
||||
as_on_match: str = "closest",
|
||||
prior_match: str = "closest",
|
||||
closest: str = "previous",
|
||||
compounding: bool = True,
|
||||
years: int = 1
|
||||
years: int = 1,
|
||||
) -> float:
|
||||
"""Method to calculate returns for a certain time-period as on a particular date
|
||||
|
||||
@ -322,8 +169,8 @@ class TimeSeries(TimeSeriesCore):
|
||||
from_date: datetime.date,
|
||||
to_date: datetime.date,
|
||||
frequency: str = "D",
|
||||
as_on_match: str = 'closest',
|
||||
prior_match: str = 'closest',
|
||||
as_on_match: str = "closest",
|
||||
prior_match: str = "closest",
|
||||
closest: str = "previous",
|
||||
compounding: bool = True,
|
||||
years: int = 1,
|
||||
@ -337,14 +184,20 @@ class TimeSeries(TimeSeriesCore):
|
||||
|
||||
rolling_returns = []
|
||||
for i in dates:
|
||||
returns = self.calculate_returns(as_on=i, compounding=compounding, years=years, as_on_match=as_on_match,
|
||||
prior_match=prior_match, closest=closest)
|
||||
returns = self.calculate_returns(
|
||||
as_on=i,
|
||||
compounding=compounding,
|
||||
years=years,
|
||||
as_on_match=as_on_match,
|
||||
prior_match=prior_match,
|
||||
closest=closest,
|
||||
)
|
||||
rolling_returns.append((i, returns))
|
||||
self.rolling_returns = rolling_returns
|
||||
return self.rolling_returns
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
date_series = [
|
||||
datetime.datetime(2020, 1, 1),
|
||||
datetime.datetime(2020, 1, 2),
|
||||
|
Loading…
Reference in New Issue
Block a user