Compare commits
6 Commits
371b319e9d
...
48e47e34a8
Author | SHA1 | Date | |
---|---|---|---|
48e47e34a8 | |||
469c421639 | |||
3bc7e7b496 | |||
a395f7d98d | |||
56baf83a77 | |||
8c159062f5 |
1
.gitignore
vendored
1
.gitignore
vendored
@ -4,3 +4,4 @@
|
||||
*egg-info
|
||||
__pycache__
|
||||
.vscode
|
||||
.idea
|
21
Check3.py
Normal file
21
Check3.py
Normal file
@ -0,0 +1,21 @@
|
||||
import datetime
|
||||
import math
|
||||
import random
|
||||
import time
|
||||
from typing import List
|
||||
|
||||
from dateutil.relativedelta import relativedelta
|
||||
|
||||
import pyfacts as pft
|
||||
|
||||
data = [
|
||||
("2021-01-01", 10),
|
||||
("2021-02-01", 12),
|
||||
("2021-03-01", 14),
|
||||
("2021-04-01", 16),
|
||||
("2021-05-01", 18),
|
||||
("2021-06-01", 20),
|
||||
]
|
||||
|
||||
ts = pft.TimeSeries(data)
|
||||
print(repr(ts))
|
118
check.py
Normal file
118
check.py
Normal file
@ -0,0 +1,118 @@
|
||||
import datetime
|
||||
import math
|
||||
import random
|
||||
|
||||
# import time
|
||||
from typing import List
|
||||
|
||||
from dateutil.relativedelta import relativedelta
|
||||
|
||||
import pyfacts as pft
|
||||
|
||||
|
||||
def create_prices(s0: float, mu: float, sigma: float, num_prices: int) -> list:
|
||||
"""Generates a price following a geometric brownian motion process based on the input of the arguments.
|
||||
|
||||
Since this function is used only to generate data for tests, the seed is fixed as 1234.
|
||||
Many of the tests rely on exact values generated using this seed.
|
||||
If the seed is changed, those tests will fail.
|
||||
|
||||
Parameters:
|
||||
------------
|
||||
s0: float
|
||||
Asset inital price.
|
||||
|
||||
mu: float
|
||||
Interest rate expressed annual terms.
|
||||
|
||||
sigma: float
|
||||
Volatility expressed annual terms.
|
||||
|
||||
num_prices: int
|
||||
number of prices to generate
|
||||
|
||||
Returns:
|
||||
--------
|
||||
Returns a list of values generated using GBM algorithm
|
||||
"""
|
||||
|
||||
random.seed(1234) # WARNING! Changing the seed will cause most tests to fail
|
||||
all_values = []
|
||||
for _ in range(num_prices):
|
||||
s0 *= math.exp(
|
||||
(mu - 0.5 * sigma**2) * (1.0 / 365.0) + sigma * math.sqrt(1.0 / 365.0) * random.gauss(mu=0, sigma=1)
|
||||
)
|
||||
all_values.append(round(s0, 2))
|
||||
|
||||
return all_values
|
||||
|
||||
|
||||
def sample_data_generator(
|
||||
frequency: pft.Frequency,
|
||||
num: int = 1000,
|
||||
skip_weekends: bool = False,
|
||||
mu: float = 0.1,
|
||||
sigma: float = 0.05,
|
||||
eomonth: bool = False,
|
||||
) -> List[tuple]:
|
||||
"""Creates TimeSeries data
|
||||
|
||||
Parameters:
|
||||
-----------
|
||||
frequency: Frequency
|
||||
The frequency of the time series data to be generated.
|
||||
|
||||
num: int
|
||||
Number of date: value pairs to be generated.
|
||||
|
||||
skip_weekends: bool
|
||||
Whether weekends (saturday, sunday) should be skipped.
|
||||
Gets used only if the frequency is daily.
|
||||
|
||||
mu: float
|
||||
Mean return for the values.
|
||||
|
||||
sigma: float
|
||||
standard deviation of the values.
|
||||
|
||||
Returns:
|
||||
--------
|
||||
Returns a TimeSeries object
|
||||
"""
|
||||
|
||||
start_date = datetime.datetime(2017, 1, 1)
|
||||
timedelta_dict = {
|
||||
frequency.freq_type: int(
|
||||
frequency.value * num * (7 / 5 if frequency == pft.AllFrequencies.D and skip_weekends else 1)
|
||||
)
|
||||
}
|
||||
end_date = start_date + relativedelta(**timedelta_dict)
|
||||
dates = pft.create_date_series(start_date, end_date, frequency.symbol, skip_weekends=skip_weekends, eomonth=eomonth)
|
||||
values = create_prices(1000, mu, sigma, num)
|
||||
ts = list(zip(dates, values))
|
||||
return ts
|
||||
|
||||
|
||||
market_data = sample_data_generator(num=3600, frequency=pft.AllFrequencies.D, skip_weekends=False)
|
||||
mts = pft.TimeSeries(market_data, "D")
|
||||
print(mts)
|
||||
|
||||
# print("Datediff=", (mts.end_date - mts.start_date).days)
|
||||
# stock_data = sample_data_generator(num=3600, frequency=pft.AllFrequencies.D, skip_weekends=False, mu=0.12, sigma=0.15)
|
||||
# sts = pft.TimeSeries(stock_data, "D")
|
||||
# print(sts)
|
||||
|
||||
# start = time.time()
|
||||
# alpha = pft.jensens_alpha(
|
||||
# asset_data=sts, market_data=mts, risk_free_rate=0.052, return_period_unit="months", return_period_value=1
|
||||
# )
|
||||
|
||||
# print(alpha)
|
||||
|
||||
# print("Alpha calculation took", time.time() - start, "seconds")
|
||||
|
||||
# print("Correlation=", pft.correlation(sts, mts))
|
||||
|
||||
rr = mts.calculate_rolling_returns(frequency="D")
|
||||
|
||||
print(117, rr[rr.values < 0.1])
|
100
check2.py
Normal file
100
check2.py
Normal file
@ -0,0 +1,100 @@
|
||||
import datetime
|
||||
import math
|
||||
import random
|
||||
import time
|
||||
from typing import List
|
||||
|
||||
from dateutil.relativedelta import relativedelta
|
||||
|
||||
import pyfacts as pft
|
||||
|
||||
|
||||
def create_prices(s0: float, mu: float, sigma: float, num_prices: int) -> list:
|
||||
"""Generates a price following a geometric brownian motion process based on the input of the arguments.
|
||||
|
||||
Since this function is used only to generate data for tests, the seed is fixed as 1234.
|
||||
Many of the tests rely on exact values generated using this seed.
|
||||
If the seed is changed, those tests will fail.
|
||||
|
||||
Parameters:
|
||||
------------
|
||||
s0: float
|
||||
Asset inital price.
|
||||
|
||||
mu: float
|
||||
Interest rate expressed annual terms.
|
||||
|
||||
sigma: float
|
||||
Volatility expressed annual terms.
|
||||
|
||||
num_prices: int
|
||||
number of prices to generate
|
||||
|
||||
Returns:
|
||||
--------
|
||||
Returns a list of values generated using GBM algorithm
|
||||
"""
|
||||
|
||||
random.seed(1234) # WARNING! Changing the seed will cause most tests to fail
|
||||
all_values = []
|
||||
for _ in range(num_prices):
|
||||
s0 *= math.exp(
|
||||
(mu - 0.5 * sigma**2) * (1.0 / 365.0) + sigma * math.sqrt(1.0 / 365.0) * random.gauss(mu=0, sigma=1)
|
||||
)
|
||||
all_values.append(round(s0, 2))
|
||||
|
||||
return all_values
|
||||
|
||||
|
||||
def sample_data_generator(
|
||||
frequency: pft.Frequency,
|
||||
num: int = 1000,
|
||||
skip_weekends: bool = False,
|
||||
mu: float = 0.1,
|
||||
sigma: float = 0.05,
|
||||
eomonth: bool = False,
|
||||
) -> List[tuple]:
|
||||
"""Creates TimeSeries data
|
||||
|
||||
Parameters:
|
||||
-----------
|
||||
frequency: Frequency
|
||||
The frequency of the time series data to be generated.
|
||||
|
||||
num: int
|
||||
Number of date: value pairs to be generated.
|
||||
|
||||
skip_weekends: bool
|
||||
Whether weekends (saturday, sunday) should be skipped.
|
||||
Gets used only if the frequency is daily.
|
||||
|
||||
mu: float
|
||||
Mean return for the values.
|
||||
|
||||
sigma: float
|
||||
standard deviation of the values.
|
||||
|
||||
Returns:
|
||||
--------
|
||||
Returns a TimeSeries object
|
||||
"""
|
||||
|
||||
start_date = datetime.datetime(2017, 1, 1)
|
||||
timedelta_dict = {
|
||||
frequency.freq_type: int(
|
||||
frequency.value * num * (7 / 5 if frequency == pft.AllFrequencies.D and skip_weekends else 1)
|
||||
)
|
||||
}
|
||||
end_date = start_date + relativedelta(**timedelta_dict)
|
||||
dates = pft.create_date_series(start_date, end_date, frequency.symbol, skip_weekends=skip_weekends, eomonth=eomonth)
|
||||
values = create_prices(1000, mu, sigma, num)
|
||||
ts = list(zip(dates, values))
|
||||
return ts
|
||||
|
||||
|
||||
market_data = sample_data_generator(num=3600, frequency=pft.AllFrequencies.D, skip_weekends=False)
|
||||
mts = pft.TimeSeries(market_data, "D")
|
||||
print(mts)
|
||||
|
||||
sortino = pft.sortino_ratio(mts, risk_free_rate=0.05)
|
||||
print(sortino)
|
26
my_checks.py
Normal file
26
my_checks.py
Normal file
@ -0,0 +1,26 @@
|
||||
import datetime
|
||||
import time
|
||||
import timeit
|
||||
|
||||
import pandas
|
||||
|
||||
from pyfacts.pyfacts import AllFrequencies, TimeSeries, create_date_series
|
||||
|
||||
dfd = pandas.read_csv("test_files/msft.csv")
|
||||
dfm = pandas.read_csv("test_files/nav_history_monthly.csv")
|
||||
dfq = pandas.read_csv("test_files/nav_history_quarterly.csv")
|
||||
|
||||
data_d = [(i.date, i.nav) for i in dfd.itertuples()]
|
||||
data_m = [{"date": i.date, "value": i.nav} for i in dfm.itertuples()]
|
||||
data_q = {i.date: i.nav for i in dfq.itertuples()}
|
||||
data_q.update({"14-02-2022": 93.7})
|
||||
|
||||
tsd = TimeSeries(data_d, frequency="D")
|
||||
tsm = TimeSeries(data_m, frequency="M", date_format="%d-%m-%Y")
|
||||
tsq = TimeSeries(data_q, frequency="Q", date_format="%d-%m-%Y")
|
||||
|
||||
start = time.time()
|
||||
# ts.calculate_rolling_returns(datetime.datetime(2015, 1, 1), datetime.datetime(2022, 2, 1), years=1)
|
||||
bdata = tsq.bfill()
|
||||
# rr = tsd.calculate_rolling_returns(datetime.datetime(2022, 1, 1), datetime.datetime(2022, 2, 1), years=1)
|
||||
print(time.time() - start)
|
26
my_test.py
26
my_test.py
@ -1,26 +0,0 @@
|
||||
import datetime
|
||||
import time
|
||||
import timeit
|
||||
|
||||
import pandas
|
||||
|
||||
from fincal.fincal import AllFrequencies, TimeSeries, create_date_series
|
||||
|
||||
dfd = pandas.read_csv('test_files/msft.csv')
|
||||
dfm = pandas.read_csv('test_files/nav_history_monthly.csv')
|
||||
dfq = pandas.read_csv('test_files/nav_history_quarterly.csv')
|
||||
|
||||
data_d = [(i.date, i.nav) for i in dfd.itertuples()]
|
||||
data_m = [{'date': i.date, 'value': i.nav} for i in dfm.itertuples()]
|
||||
data_q = {i.date: i.nav for i in dfq.itertuples()}
|
||||
data_q.update({'14-02-2022': 93.7})
|
||||
|
||||
tsd = TimeSeries(data_d, frequency='D')
|
||||
tsm = TimeSeries(data_m, frequency='M', date_format='%d-%m-%Y')
|
||||
tsq = TimeSeries(data_q, frequency='Q', date_format='%d-%m-%Y')
|
||||
|
||||
start = time.time()
|
||||
# ts.calculate_rolling_returns(datetime.datetime(2015, 1, 1), datetime.datetime(2022, 2, 1), years=1)
|
||||
bdata = tsq.bfill()
|
||||
# rr = tsd.calculate_rolling_returns(datetime.datetime(2022, 1, 1), datetime.datetime(2022, 2, 1), years=1)
|
||||
print(time.time() - start)
|
@ -13,9 +13,9 @@ class DateNotFoundError(Exception):
|
||||
class DateOutOfRangeError(Exception):
|
||||
"""Exception to be raised when provided date is outside the range of dates in the time series"""
|
||||
|
||||
def __init__(self, date: datetime.datetime, type: Literal['min', 'max']) -> None:
|
||||
if type == 'min':
|
||||
def __init__(self, date: datetime.datetime, type: Literal["min", "max"]) -> None:
|
||||
if type == "min":
|
||||
message = f"Provided date {date} is before the first date in the TimeSeries"
|
||||
if type == 'max':
|
||||
if type == "max":
|
||||
message = f"Provided date {date} is after the last date in the TimeSeries"
|
||||
super().__init__(message)
|
||||
|
@ -8,7 +8,7 @@ from typing import Literal
|
||||
from pyfacts.core import date_parser
|
||||
|
||||
from .pyfacts import TimeSeries
|
||||
from .utils import _interval_to_years
|
||||
from .utils import _interval_to_years, covariance
|
||||
|
||||
|
||||
@date_parser(3, 4)
|
||||
@ -212,7 +212,7 @@ def beta(
|
||||
asset_rr = asset_data.calculate_rolling_returns(**common_params)
|
||||
market_rr = market_data.calculate_rolling_returns(**common_params)
|
||||
|
||||
cov = statistics.covariance(asset_rr.values, market_rr.values)
|
||||
cov = covariance(asset_rr.values, market_rr.values)
|
||||
market_var = statistics.variance(market_rr.values)
|
||||
|
||||
beta = cov / market_var
|
||||
|
@ -1,4 +1,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import datetime
|
||||
import statistics
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Literal, Mapping, Sequence, Tuple
|
||||
|
||||
@ -187,3 +190,36 @@ def _is_eomonth(dates: Sequence[datetime.datetime], threshold: float = 0.7):
|
||||
eomonth_dates = [date.month != (date + relativedelta(days=1)).month for date in dates]
|
||||
eomonth_proportion = sum(eomonth_dates) / len(dates)
|
||||
return eomonth_proportion > threshold
|
||||
|
||||
|
||||
def covariance(series1: list, series2: list) -> float:
|
||||
"""Returns the covariance of two series
|
||||
|
||||
This is a compatibility function for Python versions prior to 3.10.
|
||||
It will be replaced with statistics.covariance when support is dropped for versions <3.10.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
series1 : List
|
||||
A list of numbers
|
||||
series2 : list
|
||||
A list of numbers
|
||||
|
||||
Returns
|
||||
-------
|
||||
float
|
||||
Returns the covariance as a float value
|
||||
"""
|
||||
|
||||
n = len(series1)
|
||||
if len(series2) != n:
|
||||
raise ValueError("Lenght of both series must be same for covariance calcualtion.")
|
||||
if n < 2:
|
||||
raise ValueError("At least two data poitns are required for covariance calculation.")
|
||||
|
||||
mean1 = statistics.mean(series1)
|
||||
mean2 = statistics.mean(series2)
|
||||
|
||||
xy = sum([(x - mean1) * (y - mean2) for x, y in zip(series1, series2)])
|
||||
|
||||
return xy / n
|
||||
|
34
test.py
34
test.py
@ -1,34 +0,0 @@
|
||||
# from fincal.core import FincalOptions
|
||||
import fincal as fc
|
||||
|
||||
data = [
|
||||
("2022-01-01", 150),
|
||||
("2022-01-02", 152),
|
||||
("2022-01-03", 151),
|
||||
("2022-01-04", 154),
|
||||
("2022-01-05", 150),
|
||||
("2022-01-06", 157),
|
||||
("2022-01-07", 155),
|
||||
("2022-01-08", 158),
|
||||
("2022-01-09", 162),
|
||||
("2022-01-10", 160),
|
||||
("2022-01-11", 156),
|
||||
("2022-01-12", 162),
|
||||
("2023-01-01", 164),
|
||||
("2023-01-02", 161),
|
||||
("2023-01-03", 167),
|
||||
("2023-01-04", 168),
|
||||
]
|
||||
ts = fc.TimeSeries(data, frequency="D", date_format="%Y-%d-%m")
|
||||
print(ts)
|
||||
|
||||
sharpe = fc.sharpe_ratio(
|
||||
ts,
|
||||
risk_free_rate=(1 + 0.15) ** (1 / 12) - 1,
|
||||
from_date="2022-02-01",
|
||||
to_date="2023-04-01",
|
||||
frequency="M",
|
||||
return_period_unit="months",
|
||||
return_period_value=1,
|
||||
)
|
||||
print(f"{sharpe=}")
|
52
test2.py
52
test2.py
@ -1,52 +0,0 @@
|
||||
import time
|
||||
|
||||
from fincal.fincal import TimeSeries
|
||||
|
||||
# start = time.time()
|
||||
# dfd = pd.read_csv("test_files/msft.csv") # , dtype=dict(nav=str))
|
||||
# # dfd = dfd[dfd["amfi_code"] == 118825].reset_index(drop=True)
|
||||
# print("instantiation took", round((time.time() - start) * 1000, 2), "ms")
|
||||
# ts = TimeSeries([(i.date, i.nav) for i in dfd.itertuples()], frequency="D")
|
||||
# print(repr(ts))
|
||||
|
||||
start = time.time()
|
||||
# mdd = ts.max_drawdown()
|
||||
# print(mdd)
|
||||
# print("max drawdown calc took", round((time.time() - start) * 1000, 2), "ms")
|
||||
# # print(ts[['2022-01-31', '2021-05-28']])
|
||||
|
||||
# rr = ts.calculate_rolling_returns(
|
||||
# from_date='2021-01-01',
|
||||
# to_date='2022-01-01',
|
||||
# frequency='D',
|
||||
# interval_type='days',
|
||||
# interval_value=30,
|
||||
# compounding=False
|
||||
# )
|
||||
|
||||
|
||||
data = [
|
||||
("2022-01-01", 10),
|
||||
# ("2022-01-08", 12),
|
||||
("2022-01-15", 14),
|
||||
("2022-01-22", 16)
|
||||
# ("2020-02-07", 18),
|
||||
# ("2020-02-14", 20),
|
||||
# ("2020-02-21", 22),
|
||||
# ("2020-02-28", 24),
|
||||
# ("2020-03-01", 26),
|
||||
# ("2020-03-01", 28),
|
||||
# ("2020-03-01", 30),
|
||||
# ("2020-03-01", 32),
|
||||
# ("2021-03-01", 34),
|
||||
]
|
||||
|
||||
ts = TimeSeries(data, "W")
|
||||
# ts_expanded = ts.expand("D", "ffill", skip_weekends=True)
|
||||
|
||||
# for i in ts_expanded:
|
||||
# print(i)
|
||||
|
||||
print(ts.get("2022-01-01"))
|
||||
|
||||
print(ts.ffill())
|
@ -169,7 +169,7 @@ class TestBeta:
|
||||
sts = pft.TimeSeries(stock_data, "D")
|
||||
mts = pft.TimeSeries(market_data, "D")
|
||||
beta = pft.beta(sts, mts, frequency="D", return_period_unit="days", return_period_value=1)
|
||||
assert round(beta, 4) == 1.6001
|
||||
assert round(beta, 4) == 1.5997
|
||||
|
||||
def test_beta_daily_freq_daily_returns(self, create_test_data):
|
||||
market_data = create_test_data(num=3600, frequency=pft.AllFrequencies.D)
|
||||
@ -177,7 +177,7 @@ class TestBeta:
|
||||
sts = pft.TimeSeries(stock_data, "D")
|
||||
mts = pft.TimeSeries(market_data, "D")
|
||||
beta = pft.beta(sts, mts)
|
||||
assert round(beta, 4) == 1.6292
|
||||
assert round(beta, 4) == 1.6287
|
||||
|
||||
def test_beta_monthly_freq(self, create_test_data):
|
||||
market_data = create_test_data(num=3600, frequency=pft.AllFrequencies.D)
|
||||
@ -185,7 +185,7 @@ class TestBeta:
|
||||
sts = pft.TimeSeries(stock_data, "D")
|
||||
mts = pft.TimeSeries(market_data, "D")
|
||||
beta = pft.beta(sts, mts, frequency="M")
|
||||
assert round(beta, 4) == 1.629
|
||||
assert round(beta, 4) == 1.6137
|
||||
|
||||
def test_beta_monthly_freq_monthly_returns(self, create_test_data):
|
||||
market_data = create_test_data(num=3600, frequency=pft.AllFrequencies.D)
|
||||
@ -193,4 +193,4 @@ class TestBeta:
|
||||
sts = pft.TimeSeries(stock_data, "D")
|
||||
mts = pft.TimeSeries(market_data, "D")
|
||||
beta = pft.beta(sts, mts, frequency="M", return_period_unit="months", return_period_value=1)
|
||||
assert round(beta, 4) == 1.6023
|
||||
assert round(beta, 4) == 1.5887
|
||||
|
Loading…
Reference in New Issue
Block a user