Compare commits
7 Commits
2f0f1e0e47
...
9ddf70fc61
Author | SHA1 | Date | |
---|---|---|---|
9ddf70fc61 | |||
04176646b6 | |||
03283f7ed4 | |||
b99f0d67c1 | |||
3391f04e19 | |||
e22f6acc87 | |||
59c9c658ca |
15
.ipynb_checkpoints/README-checkpoint.md
Normal file
15
.ipynb_checkpoints/README-checkpoint.md
Normal file
@ -0,0 +1,15 @@
|
||||
# Fincal
|
||||
This module simplified handling of time-series data
|
||||
|
||||
## The problem
|
||||
Time series data often have missing data points. These missing points mess things up when you are trying to do a comparison between two sections of a time series.
|
||||
|
||||
To make things worse, most libraries don't allow comparison based on dates. Month to Month and year to year comparisons become difficult as they cannot be translated into number of days. However, these are commonly used metrics while looking at financial data.
|
||||
|
||||
## The Solution
|
||||
Fincal aims to simplify things by allowing you to:
|
||||
* Compare time-series data based on dates
|
||||
* Easy way to work around missing dates by taking the closest data points
|
||||
* Completing series with missing data points using forward fill and backward fill
|
||||
|
||||
## Examples
|
129
.ipynb_checkpoints/testing-checkpoint.ipynb
Normal file
129
.ipynb_checkpoints/testing-checkpoint.ipynb
Normal file
@ -0,0 +1,129 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "3f7938c0-98e3-43b8-86e8-4f000cda7ce5",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import datetime\n",
|
||||
"import pandas as pd\n",
|
||||
"\n",
|
||||
"from fincal.fincal import TimeSeries\n",
|
||||
"from fincal.core import Series"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "757eafc2-f804-4e7e-a3b8-2d09cd62e646",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"dfd = pd.read_csv('test_files/nav_history_daily - copy.csv')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "59b3d4a9-8ef4-4652-9e20-1bac69ab4ff9",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"dfd = dfd[dfd['amfi_code'] == 118825].reset_index(drop=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"id": "4bc95ae0-8c33-4eab-acf9-e765d22979b8",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Warning: The input data contains duplicate dates which have been ignored.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"ts = TimeSeries([(i.date, i.nav) for i in dfd.itertuples()], frequency='D')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"id": "f2c3218c-3984-43d6-8638-41a74a9d0b58",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"TimeSeries([(datetime.datetime(2013, 1, 2, 0, 0), 18.972),\n",
|
||||
"\t (datetime.datetime(2013, 1, 3, 0, 0), 19.011),\n",
|
||||
"\t (datetime.datetime(2013, 1, 4, 0, 0), 19.008)\n",
|
||||
"\t ...\n",
|
||||
"\t (datetime.datetime(2022, 2, 10, 0, 0), 86.5),\n",
|
||||
"\t (datetime.datetime(2022, 2, 11, 0, 0), 85.226),\n",
|
||||
"\t (datetime.datetime(2022, 2, 14, 0, 0), 82.53299999999999)], frequency='D')"
|
||||
]
|
||||
},
|
||||
"execution_count": 20,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"ts"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"id": "dc469722-c816-4b57-8d91-7a3b865f86be",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"ename": "TypeError",
|
||||
"evalue": "getattr(): attribute name must be string",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)",
|
||||
"File \u001b[1;32m<timed eval>:1\u001b[0m, in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n",
|
||||
"File \u001b[1;32mD:\\Documents\\Projects\\fincal\\fincal\\fincal.py:203\u001b[0m, in \u001b[0;36mTimeSeries.calculate_rolling_returns\u001b[1;34m(self, from_date, to_date, frequency, as_on_match, prior_match, closest, compounding, years)\u001b[0m\n\u001b[0;32m 200\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m:\n\u001b[0;32m 201\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mInvalid argument for frequency \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfrequency\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m--> 203\u001b[0m dates \u001b[38;5;241m=\u001b[39m \u001b[43mcreate_date_series\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfrom_date\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mto_date\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfrequency\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 204\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m frequency \u001b[38;5;241m==\u001b[39m AllFrequencies\u001b[38;5;241m.\u001b[39mD:\n\u001b[0;32m 205\u001b[0m dates \u001b[38;5;241m=\u001b[39m [i \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m dates \u001b[38;5;28;01mif\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtime_series]\n",
|
||||
"File \u001b[1;32mD:\\Documents\\Projects\\fincal\\fincal\\fincal.py:16\u001b[0m, in \u001b[0;36mcreate_date_series\u001b[1;34m(start_date, end_date, frequency, eomonth)\u001b[0m\n\u001b[0;32m 11\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcreate_date_series\u001b[39m(\n\u001b[0;32m 12\u001b[0m start_date: datetime\u001b[38;5;241m.\u001b[39mdatetime, end_date: datetime\u001b[38;5;241m.\u001b[39mdatetime, frequency: \u001b[38;5;28mstr\u001b[39m, eomonth: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[0;32m 13\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m List[datetime\u001b[38;5;241m.\u001b[39mdatetime]:\n\u001b[0;32m 14\u001b[0m \u001b[38;5;124;03m\"\"\"Creates a date series using a frequency\"\"\"\u001b[39;00m\n\u001b[1;32m---> 16\u001b[0m frequency \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mgetattr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mAllFrequencies\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfrequency\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 17\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m eomonth \u001b[38;5;129;01mand\u001b[39;00m frequency\u001b[38;5;241m.\u001b[39mdays \u001b[38;5;241m<\u001b[39m AllFrequencies\u001b[38;5;241m.\u001b[39mM\u001b[38;5;241m.\u001b[39mdays:\n\u001b[0;32m 18\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124meomonth cannot be set to True if frequency is higher than \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mAllFrequencies\u001b[38;5;241m.\u001b[39mM\u001b[38;5;241m.\u001b[39mname\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n",
|
||||
"\u001b[1;31mTypeError\u001b[0m: getattr(): attribute name must be string"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%%time\n",
|
||||
"ts.calculate_rolling_returns(from_date='2020-01-01', to_date='2021-01-01')"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
15
.vscode/launch.json
vendored
Normal file
15
.vscode/launch.json
vendored
Normal file
@ -0,0 +1,15 @@
|
||||
{
|
||||
// Use IntelliSense to learn about possible attributes.
|
||||
// Hover to view descriptions of existing attributes.
|
||||
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
{
|
||||
"name": "Python: Current File",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"program": "${file}",
|
||||
"console": "integratedTerminal"
|
||||
}
|
||||
]
|
||||
}
|
126
fincal/core.py
126
fincal/core.py
@ -1,8 +1,8 @@
|
||||
import datetime
|
||||
from collections import UserList
|
||||
from collections import UserDict, UserList
|
||||
from dataclasses import dataclass
|
||||
from numbers import Number
|
||||
from typing import Iterable, List, Literal, Mapping, Sequence, Tuple, Union
|
||||
from typing import Iterable, List, Literal, Mapping, Sequence, Tuple, Type, Union
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -108,23 +108,24 @@ def _parse_date(date: str, date_format: str = None):
|
||||
try:
|
||||
date = datetime.datetime.strptime(date, date_format)
|
||||
except TypeError:
|
||||
raise Exception("Date does not seem to be valid date-like string")
|
||||
raise ValueError("Date does not seem to be valid date-like string")
|
||||
except ValueError:
|
||||
raise Exception("Date could not be parsed. Have you set the correct date format in FincalOptions.date_format?")
|
||||
raise ValueError("Date could not be parsed. Have you set the correct date format in FincalOptions.date_format?")
|
||||
return date
|
||||
|
||||
|
||||
class _IndexSlicer:
|
||||
"""Class to create a slice using iloc in TimeSeriesCore"""
|
||||
|
||||
def __init__(self, parent_obj):
|
||||
self.parent = parent_obj
|
||||
|
||||
def __getitem__(self, n):
|
||||
all_keys = list(self.parent.time_series)
|
||||
if isinstance(n, int):
|
||||
keys = [all_keys[n]]
|
||||
keys = [self.parent.dates[n]]
|
||||
else:
|
||||
keys = all_keys[n]
|
||||
item = [(key, self.parent.time_series[key]) for key in keys]
|
||||
keys = self.parent.dates[n]
|
||||
item = [(key, self.parent.data[key]) for key in keys]
|
||||
if len(item) == 1:
|
||||
return item[0]
|
||||
|
||||
@ -132,34 +133,36 @@ class _IndexSlicer:
|
||||
|
||||
|
||||
class Series(UserList):
|
||||
def __init__(self, data):
|
||||
if not isinstance(data, Sequence):
|
||||
raise TypeError("Series only supports creation using Sequence types")
|
||||
"""Container for a series of objects, all objects must be of the same type"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
data,
|
||||
data_type: Union[Type[bool], Type[float], Type[str], Type[datetime.datetime]],
|
||||
date_format: str = None,
|
||||
):
|
||||
self.dtype = data_type
|
||||
if not isinstance(data, Sequence):
|
||||
raise TypeError("Series object can only be created using Sequence types")
|
||||
|
||||
for i in data:
|
||||
if not isinstance(i, data_type):
|
||||
raise Exception("All arguments must be of the same type")
|
||||
|
||||
if data_type == str:
|
||||
data = [_parse_date(i, date_format) for i in data]
|
||||
|
||||
if isinstance(data[0], bool):
|
||||
self.data = data
|
||||
self.dtype = bool
|
||||
elif isinstance(data[0], Number):
|
||||
self.dtype = float
|
||||
self.data = [float(i) for i in data]
|
||||
elif isinstance(data[0], str):
|
||||
try:
|
||||
data = [datetime.datetime.strptime(i, FincalOptions.date_format) for i in data]
|
||||
self.dtype = datetime.datetime
|
||||
except ValueError:
|
||||
raise TypeError(
|
||||
"Series does not support string data type except dates.\n"
|
||||
"Hint: Try setting the date format using FincalOptions.date_format"
|
||||
)
|
||||
elif isinstance(data[0], (datetime.datetime, datetime.date)):
|
||||
self.dtype = datetime.datetime
|
||||
self.data = [_parse_date(i) for i in data]
|
||||
else:
|
||||
raise TypeError(f"Cannot create series object from {type(data).__name__} of {type(data[0]).__name__}")
|
||||
|
||||
def __repr__(self):
|
||||
return f"{self.__class__.__name__}({self.data})"
|
||||
|
||||
def __getitem__(self, i):
|
||||
if isinstance(i, slice):
|
||||
return self.__class__(self.data[i], self.dtype)
|
||||
else:
|
||||
return self.data[i]
|
||||
|
||||
def __gt__(self, other):
|
||||
if self.dtype == bool:
|
||||
raise TypeError("> not supported for boolean series")
|
||||
@ -168,7 +171,7 @@ class Series(UserList):
|
||||
other = _parse_date(other)
|
||||
|
||||
if self.dtype == float and isinstance(other, Number) or isinstance(other, self.dtype):
|
||||
gt = Series([i > other for i in self.data])
|
||||
gt = Series([i > other for i in self.data], bool)
|
||||
else:
|
||||
raise Exception(f"Cannot compare type {self.dtype.__name__} to {type(other).__name__}")
|
||||
|
||||
@ -179,20 +182,20 @@ class Series(UserList):
|
||||
raise TypeError("< not supported for boolean series")
|
||||
|
||||
if self.dtype == float and isinstance(other, Number) or isinstance(other, self.dtype):
|
||||
lt = Series([i < other for i in self.data])
|
||||
lt = Series([i < other for i in self.data], bool)
|
||||
else:
|
||||
raise Exception(f"Cannot compare type {self.dtype.__name__} to {type(other).__name__}")
|
||||
return lt
|
||||
|
||||
def __eq__(self, other):
|
||||
if self.dtype == float and isinstance(other, Number) or isinstance(other, self.dtype):
|
||||
eq = Series([i == other for i in self.data])
|
||||
eq = Series([i == other for i in self.data], bool)
|
||||
else:
|
||||
raise Exception(f"Cannot compare type {self.dtype.__name__} to {type(other).__name__}")
|
||||
return eq
|
||||
|
||||
|
||||
class TimeSeriesCore:
|
||||
class TimeSeriesCore(UserDict):
|
||||
"""Defines the core building blocks of a TimeSeries object"""
|
||||
|
||||
def __init__(
|
||||
@ -219,8 +222,8 @@ class TimeSeriesCore:
|
||||
|
||||
data = _preprocess_timeseries(data, date_format=date_format)
|
||||
|
||||
self.time_series = dict(data)
|
||||
if len(self.time_series) != len(data):
|
||||
self.data = dict(data)
|
||||
if len(self.data) != len(data):
|
||||
print("Warning: The input data contains duplicate dates which have been ignored.")
|
||||
self.frequency = getattr(AllFrequencies, frequency)
|
||||
self.iter_num = -1
|
||||
@ -231,17 +234,17 @@ class TimeSeriesCore:
|
||||
|
||||
@property
|
||||
def dates(self):
|
||||
if self._dates is None or len(self._dates) != len(self.time_series):
|
||||
self._dates = list(self.time_series.keys())
|
||||
if self._dates is None or len(self._dates) != len(self.data):
|
||||
self._dates = list(self.data.keys())
|
||||
|
||||
return Series(self._dates)
|
||||
return Series(self._dates, datetime.datetime)
|
||||
|
||||
@property
|
||||
def values(self):
|
||||
if self._values is None or len(self._values) != len(self.time_series):
|
||||
self._values = list(self.time_series.values())
|
||||
if self._values is None or len(self._values) != len(self.data):
|
||||
self._values = list(self.data.values())
|
||||
|
||||
return Series(self._values)
|
||||
return Series(self._values, float)
|
||||
|
||||
@property
|
||||
def start_date(self):
|
||||
@ -255,19 +258,19 @@ class TimeSeriesCore:
|
||||
"""Returns a slice of the dataframe from beginning and end"""
|
||||
|
||||
printable = {}
|
||||
iter_f = iter(self.time_series)
|
||||
iter_f = iter(self.data)
|
||||
first_n = [next(iter_f) for i in range(n // 2)]
|
||||
|
||||
iter_b = reversed(self.time_series)
|
||||
iter_b = reversed(self.data)
|
||||
last_n = [next(iter_b) for i in range(n // 2)]
|
||||
last_n.sort()
|
||||
|
||||
printable["start"] = [str((i, self.time_series[i])) for i in first_n]
|
||||
printable["end"] = [str((i, self.time_series[i])) for i in last_n]
|
||||
printable["start"] = [str((i, self.data[i])) for i in first_n]
|
||||
printable["end"] = [str((i, self.data[i])) for i in last_n]
|
||||
return printable
|
||||
|
||||
def __repr__(self):
|
||||
if len(self.time_series) > 6:
|
||||
if len(self.data) > 6:
|
||||
printable = self._get_printable_slice(6)
|
||||
printable_str = "{}([{}\n\t ...\n\t {}], frequency={})".format(
|
||||
self.__class__.__name__,
|
||||
@ -278,20 +281,20 @@ class TimeSeriesCore:
|
||||
else:
|
||||
printable_str = "{}([{}], frequency={})".format(
|
||||
self.__class__.__name__,
|
||||
",\n\t".join([str(i) for i in self.time_series.items()]),
|
||||
",\n\t".join([str(i) for i in self.data.items()]),
|
||||
repr(self.frequency.symbol),
|
||||
)
|
||||
return printable_str
|
||||
|
||||
def __str__(self):
|
||||
if len(self.time_series) > 6:
|
||||
if len(self.data) > 6:
|
||||
printable = self._get_printable_slice(6)
|
||||
printable_str = "[{}\n ...\n {}]".format(
|
||||
",\n ".join(printable["start"]),
|
||||
",\n ".join(printable["end"]),
|
||||
)
|
||||
else:
|
||||
printable_str = "[{}]".format(",\n ".join([str(i) for i in self.time_series.items()]))
|
||||
printable_str = "[{}]".format(",\n ".join([str(i) for i in self.data.items()]))
|
||||
return printable_str
|
||||
|
||||
def __getitem__(self, key):
|
||||
@ -302,14 +305,14 @@ class TimeSeriesCore:
|
||||
raise Exception(f"Length of Series: {len(key)} did not match length of object: {len(self.dates)}")
|
||||
else:
|
||||
dates_to_return = [self.dates[i] for i, j in enumerate(key) if j]
|
||||
data_to_return = [(key, self.time_series[key]) for key in dates_to_return]
|
||||
return TimeSeriesCore(data_to_return, frequency=self.frequency.symbol)
|
||||
data_to_return = [(key, self.data[key]) for key in dates_to_return]
|
||||
return self.__class__(data_to_return, frequency=self.frequency.symbol)
|
||||
|
||||
if isinstance(key, int):
|
||||
raise KeyError(f"{key}. For index based slicing, use .iloc[{key}]")
|
||||
elif isinstance(key, (datetime.datetime, datetime.date)):
|
||||
key = _parse_date(key)
|
||||
item = (key, self.time_series[key])
|
||||
item = (key, self.data[key])
|
||||
elif isinstance(key, str):
|
||||
if key == "dates":
|
||||
return self.dates
|
||||
@ -317,18 +320,15 @@ class TimeSeriesCore:
|
||||
return self.values
|
||||
|
||||
dt_key = _parse_date(key)
|
||||
item = (dt_key, self.time_series[dt_key])
|
||||
item = (dt_key, self.data[dt_key])
|
||||
|
||||
elif isinstance(key, Sequence):
|
||||
keys = [_parse_date(i) for i in key]
|
||||
item = [(k, self.time_series[k]) for k in keys]
|
||||
item = [(k, self.data[k]) for k in keys]
|
||||
else:
|
||||
raise TypeError(f"Invalid type {repr(type(key).__name__)} for slicing.")
|
||||
return item
|
||||
|
||||
def __len__(self):
|
||||
return len(self.time_series)
|
||||
|
||||
def __iter__(self):
|
||||
self.n = 0
|
||||
return self
|
||||
@ -339,22 +339,22 @@ class TimeSeriesCore:
|
||||
else:
|
||||
key = self.dates[self.n]
|
||||
self.n += 1
|
||||
return key, self.time_series[key]
|
||||
return key, self.data[key]
|
||||
|
||||
def head(self, n: int = 6):
|
||||
"""Returns the first n items of the TimeSeries object"""
|
||||
|
||||
keys = list(self.time_series.keys())
|
||||
keys = list(self.data.keys())
|
||||
keys = keys[:n]
|
||||
result = [(key, self.time_series[key]) for key in keys]
|
||||
result = [(key, self.data[key]) for key in keys]
|
||||
return result
|
||||
|
||||
def tail(self, n: int = 6):
|
||||
"""Returns the last n items of the TimeSeries object"""
|
||||
|
||||
keys = list(self.time_series.keys())
|
||||
keys = list(self.data.keys())
|
||||
keys = keys[-n:]
|
||||
result = [(key, self.time_series[key]) for key in keys]
|
||||
result = [(key, self.data[key]) for key in keys]
|
||||
return result
|
||||
|
||||
@property
|
||||
|
@ -40,7 +40,7 @@ class TimeSeries(TimeSeriesCore):
|
||||
def info(self):
|
||||
"""Summary info about the TimeSeries object"""
|
||||
|
||||
total_dates = len(self.time_series.keys())
|
||||
total_dates = len(self.data.keys())
|
||||
res_string = "First date: {}\nLast date: {}\nNumber of rows: {}"
|
||||
return res_string.format(self.start_date, self.end_date, total_dates)
|
||||
|
||||
@ -66,16 +66,16 @@ class TimeSeries(TimeSeriesCore):
|
||||
new_ts = dict()
|
||||
for cur_date in dates_to_fill:
|
||||
try:
|
||||
cur_val = self.time_series[cur_date]
|
||||
cur_val = self.data[cur_date]
|
||||
except KeyError:
|
||||
pass
|
||||
new_ts.update({cur_date: cur_val})
|
||||
|
||||
if inplace:
|
||||
self.time_series = new_ts
|
||||
self.data = new_ts
|
||||
return None
|
||||
|
||||
return TimeSeries(new_ts, frequency=self.frequency.symbol)
|
||||
return self.__class__(new_ts, frequency=self.frequency.symbol)
|
||||
|
||||
def bfill(self, inplace: bool = False, limit: int = None) -> Union[TimeSeries, None]:
|
||||
"""Backward fill missing dates in the time series
|
||||
@ -100,16 +100,16 @@ class TimeSeries(TimeSeriesCore):
|
||||
bfill_ts = dict()
|
||||
for cur_date in reversed(dates_to_fill):
|
||||
try:
|
||||
cur_val = self.time_series[cur_date]
|
||||
cur_val = self.data[cur_date]
|
||||
except KeyError:
|
||||
pass
|
||||
bfill_ts.update({cur_date: cur_val})
|
||||
new_ts = {k: bfill_ts[k] for k in reversed(bfill_ts)}
|
||||
if inplace:
|
||||
self.time_series = new_ts
|
||||
self.data = new_ts
|
||||
return None
|
||||
|
||||
return TimeSeries(new_ts, frequency=self.frequency.symbol)
|
||||
return self.__class__(new_ts, frequency=self.frequency.symbol)
|
||||
|
||||
def calculate_returns(
|
||||
self,
|
||||
@ -163,7 +163,7 @@ class TimeSeries(TimeSeriesCore):
|
||||
as_on_delta, prior_delta = _preprocess_match_options(as_on_match, prior_match, closest)
|
||||
|
||||
while True:
|
||||
current = self.time_series.get(as_on, None)
|
||||
current = self.data.get(as_on, None)
|
||||
if current is not None:
|
||||
break
|
||||
elif not as_on_delta:
|
||||
@ -172,7 +172,7 @@ class TimeSeries(TimeSeriesCore):
|
||||
|
||||
prev_date = as_on - relativedelta(years=years)
|
||||
while True:
|
||||
previous = self.time_series.get(prev_date, None)
|
||||
previous = self.data.get(prev_date, None)
|
||||
if previous is not None:
|
||||
break
|
||||
elif not prior_delta:
|
||||
@ -211,7 +211,7 @@ class TimeSeries(TimeSeriesCore):
|
||||
|
||||
dates = create_date_series(from_date, to_date, frequency.symbol)
|
||||
if frequency == AllFrequencies.D:
|
||||
dates = [i for i in dates if i in self.time_series]
|
||||
dates = [i for i in dates if i in self.data]
|
||||
|
||||
rolling_returns = []
|
||||
for i in dates:
|
||||
@ -225,7 +225,7 @@ class TimeSeries(TimeSeriesCore):
|
||||
)
|
||||
rolling_returns.append((i, returns))
|
||||
rolling_returns.sort()
|
||||
return rolling_returns
|
||||
return self.__class__(rolling_returns, self.frequency.symbol)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
364
testing.ipynb
364
testing.ipynb
@ -22,7 +22,6 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"dfd = pd.read_csv('test_files/nav_history_daily - copy.csv')\n",
|
||||
"\n",
|
||||
"dfd = dfd[dfd['amfi_code'] == 118825].reset_index(drop=True)"
|
||||
]
|
||||
},
|
||||
@ -48,7 +47,7 @@
|
||||
"\t ...\n",
|
||||
"\t (datetime.datetime(2022, 2, 10, 0, 0), 86.5),\n",
|
||||
"\t (datetime.datetime(2022, 2, 11, 0, 0), 85.226),\n",
|
||||
"\t (datetime.datetime(2022, 2, 14, 0, 0), 82.533)], frequency='D')"
|
||||
"\t (datetime.datetime(2022, 2, 14, 0, 0), 82.53299999999999)], frequency='D')"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
@ -58,7 +57,6 @@
|
||||
],
|
||||
"source": [
|
||||
"ts = TimeSeries([(i.date, i.nav) for i in dfd.itertuples()], frequency='D')\n",
|
||||
"\n",
|
||||
"ts"
|
||||
]
|
||||
},
|
||||
@ -71,8 +69,8 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[(datetime.datetime(2021, 1, 1, 0, 0), 66.652),\n",
|
||||
" (datetime.datetime(2020, 1, 1, 0, 0), 57.804)]"
|
||||
"[(datetime.datetime(2022, 1, 31, 0, 0), 85.18),\n",
|
||||
" (datetime.datetime(2021, 5, 31, 0, 0), 74.85)]"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
@ -81,19 +79,52 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"ts[['2021-01-01', '2020-01-01']]"
|
||||
"ts[['2022-01-31', '2021-05-31']]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "4d927a61-0f90-4b47-89b7-0e0d3ab1b442",
|
||||
"execution_count": 16,
|
||||
"id": "086d4377-d1b1-4e51-84c0-39dee28ef75e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Series([False, False, False, False, False, False, False, False, False, False])"
|
||||
"TimeSeries([(datetime.datetime(2021, 2, 15, 0, 0), 73.483),\n",
|
||||
"\t (datetime.datetime(2021, 2, 16, 0, 0), 73.237),\n",
|
||||
"\t (datetime.datetime(2021, 2, 17, 0, 0), 72.98)\n",
|
||||
"\t ...\n",
|
||||
"\t (datetime.datetime(2022, 2, 10, 0, 0), 86.5),\n",
|
||||
"\t (datetime.datetime(2022, 2, 11, 0, 0), 85.226),\n",
|
||||
"\t (datetime.datetime(2022, 2, 14, 0, 0), 82.53299999999999)], frequency='D')"
|
||||
]
|
||||
},
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"ts[ts.dates>'2021-02-14']"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "6f1226a3-2327-435b-88e7-fd0fdcc8cc1c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"TimeSeries([(datetime.datetime(2020, 1, 2, 0, 0), 58.285),\n",
|
||||
"\t (datetime.datetime(2020, 1, 3, 0, 0), 58.056999999999995),\n",
|
||||
"\t (datetime.datetime(2020, 1, 6, 0, 0), 56.938)\n",
|
||||
"\t ...\n",
|
||||
"\t (datetime.datetime(2022, 2, 10, 0, 0), 86.5),\n",
|
||||
"\t (datetime.datetime(2022, 2, 11, 0, 0), 85.226),\n",
|
||||
"\t (datetime.datetime(2022, 2, 14, 0, 0), 82.53299999999999)], frequency='D')"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
@ -103,57 +134,44 @@
|
||||
],
|
||||
"source": [
|
||||
"s = ts.dates > '2020-01-01'\n",
|
||||
"s[:10]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "311d1c07-d827-4d69-855f-883e1198c162",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "bb625050-5d7b-45a9-9cde-ac6e599adea5",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"0 False\n",
|
||||
"1 False\n",
|
||||
"2 False\n",
|
||||
"3 False\n",
|
||||
"4 False\n",
|
||||
" ... \n",
|
||||
"2196 True\n",
|
||||
"2197 True\n",
|
||||
"2198 True\n",
|
||||
"2199 True\n",
|
||||
"2200 True\n",
|
||||
"Length: 2201, dtype: bool"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"pd.Series(s)"
|
||||
"ts[s]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "e815edc9-3746-4192-814e-bd27b2771a0c",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[(datetime.datetime(2013, 1, 2, 0, 0), 18.972),\n",
|
||||
" (datetime.datetime(2013, 1, 3, 0, 0), 19.011),\n",
|
||||
" (datetime.datetime(2013, 1, 4, 0, 0), 19.008),\n",
|
||||
" (datetime.datetime(2013, 1, 7, 0, 0), 18.95),\n",
|
||||
" (datetime.datetime(2013, 1, 8, 0, 0), 18.954),\n",
|
||||
" (datetime.datetime(2013, 1, 9, 0, 0), 18.94),\n",
|
||||
" (datetime.datetime(2013, 1, 10, 0, 0), 18.957),\n",
|
||||
" (datetime.datetime(2013, 1, 11, 0, 0), 18.948),\n",
|
||||
" (datetime.datetime(2013, 1, 14, 0, 0), 19.177),\n",
|
||||
" (datetime.datetime(2013, 1, 15, 0, 0), 19.272000000000002)]"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"ts.iloc[:10]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "dc469722-c816-4b57-8d91-7a3b865f86be",
|
||||
"metadata": {
|
||||
"scrolled": true,
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [
|
||||
@ -161,233 +179,9 @@
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"CPU times: total: 15.6 ms\n",
|
||||
"Wall time: 14 ms\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[(datetime.datetime(2020, 1, 1, 0, 0), 0.13778442642311628),\n",
|
||||
" (datetime.datetime(2020, 1, 2, 0, 0), 0.15907011891977874),\n",
|
||||
" (datetime.datetime(2020, 1, 3, 0, 0), 0.16528842679940592),\n",
|
||||
" (datetime.datetime(2020, 1, 6, 0, 0), 0.13725881835976517),\n",
|
||||
" (datetime.datetime(2020, 1, 7, 0, 0), 0.1361567661029075),\n",
|
||||
" (datetime.datetime(2020, 1, 8, 0, 0), 0.12943599493029145),\n",
|
||||
" (datetime.datetime(2020, 1, 9, 0, 0), 0.14162066246056781),\n",
|
||||
" (datetime.datetime(2020, 1, 10, 0, 0), 0.14866092589666624),\n",
|
||||
" (datetime.datetime(2020, 1, 13, 0, 0), 0.15898777321998292),\n",
|
||||
" (datetime.datetime(2020, 1, 14, 0, 0), 0.16791720569210877),\n",
|
||||
" (datetime.datetime(2020, 1, 15, 0, 0), 0.15701288705571237),\n",
|
||||
" (datetime.datetime(2020, 1, 16, 0, 0), 0.15895332557726816),\n",
|
||||
" (datetime.datetime(2020, 1, 17, 0, 0), 0.1597678687747972),\n",
|
||||
" (datetime.datetime(2020, 1, 20, 0, 0), 0.1517952575115793),\n",
|
||||
" (datetime.datetime(2020, 1, 21, 0, 0), 0.14416159380188165),\n",
|
||||
" (datetime.datetime(2020, 1, 22, 0, 0), 0.1388367359038718),\n",
|
||||
" (datetime.datetime(2020, 1, 23, 0, 0), 0.15628915183454306),\n",
|
||||
" (datetime.datetime(2020, 1, 24, 0, 0), 0.16305428514615228),\n",
|
||||
" (datetime.datetime(2020, 1, 27, 0, 0), 0.1622537810406386),\n",
|
||||
" (datetime.datetime(2020, 1, 28, 0, 0), 0.16702450881101893),\n",
|
||||
" (datetime.datetime(2020, 1, 29, 0, 0), 0.1718259672423219),\n",
|
||||
" (datetime.datetime(2020, 1, 30, 0, 0), 0.15395125479716287),\n",
|
||||
" (datetime.datetime(2020, 1, 31, 0, 0), 0.13100540412138484),\n",
|
||||
" (datetime.datetime(2020, 2, 3, 0, 0), 0.10046175704475502),\n",
|
||||
" (datetime.datetime(2020, 2, 4, 0, 0), 0.12408874488808119),\n",
|
||||
" (datetime.datetime(2020, 2, 5, 0, 0), 0.13495745562947903),\n",
|
||||
" (datetime.datetime(2020, 2, 6, 0, 0), 0.1316705790297339),\n",
|
||||
" (datetime.datetime(2020, 2, 7, 0, 0), 0.1293798434480471),\n",
|
||||
" (datetime.datetime(2020, 2, 10, 0, 0), 0.13417161807378752),\n",
|
||||
" (datetime.datetime(2020, 2, 11, 0, 0), 0.14703664006986616),\n",
|
||||
" (datetime.datetime(2020, 2, 12, 0, 0), 0.15665338645418325),\n",
|
||||
" (datetime.datetime(2020, 2, 13, 0, 0), 0.16157913712294203),\n",
|
||||
" (datetime.datetime(2020, 2, 14, 0, 0), 0.15528598971722363),\n",
|
||||
" (datetime.datetime(2020, 2, 17, 0, 0), 0.15469223007063593),\n",
|
||||
" (datetime.datetime(2020, 2, 18, 0, 0), 0.1616112297833383),\n",
|
||||
" (datetime.datetime(2020, 2, 19, 0, 0), 0.1795321518161237),\n",
|
||||
" (datetime.datetime(2020, 2, 20, 0, 0), 0.16892628011136668),\n",
|
||||
" (datetime.datetime(2020, 2, 24, 0, 0), 0.14102204408817642),\n",
|
||||
" (datetime.datetime(2020, 2, 25, 0, 0), 0.1287774793593952),\n",
|
||||
" (datetime.datetime(2020, 2, 26, 0, 0), 0.11844857467280234),\n",
|
||||
" (datetime.datetime(2020, 2, 27, 0, 0), 0.11330677290836633),\n",
|
||||
" (datetime.datetime(2020, 2, 28, 0, 0), 0.07688934948979576),\n",
|
||||
" (datetime.datetime(2020, 3, 2, 0, 0), 0.06323384067997617),\n",
|
||||
" (datetime.datetime(2020, 3, 3, 0, 0), 0.08272385847005337),\n",
|
||||
" (datetime.datetime(2020, 3, 4, 0, 0), 0.07610199644198445),\n",
|
||||
" (datetime.datetime(2020, 3, 5, 0, 0), 0.06134216421544747),\n",
|
||||
" (datetime.datetime(2020, 3, 6, 0, 0), 0.0307951704490399),\n",
|
||||
" (datetime.datetime(2020, 3, 9, 0, 0), -0.014902463666744414),\n",
|
||||
" (datetime.datetime(2020, 3, 11, 0, 0), -0.02972061472425558),\n",
|
||||
" (datetime.datetime(2020, 3, 12, 0, 0), -0.1201765519331679),\n",
|
||||
" (datetime.datetime(2020, 3, 13, 0, 0), -0.08575267799689612),\n",
|
||||
" (datetime.datetime(2020, 3, 16, 0, 0), -0.15648316950777152),\n",
|
||||
" (datetime.datetime(2020, 3, 17, 0, 0), -0.17358618226925038),\n",
|
||||
" (datetime.datetime(2020, 3, 18, 0, 0), -0.21612661547106204),\n",
|
||||
" (datetime.datetime(2020, 3, 19, 0, 0), -0.2452152219243373),\n",
|
||||
" (datetime.datetime(2020, 3, 20, 0, 0), -0.20796112876097927),\n",
|
||||
" (datetime.datetime(2020, 3, 23, 0, 0), -0.30970261339741667),\n",
|
||||
" (datetime.datetime(2020, 3, 24, 0, 0), -0.2908531090417543),\n",
|
||||
" (datetime.datetime(2020, 3, 25, 0, 0), -0.24436994526204125),\n",
|
||||
" (datetime.datetime(2020, 3, 26, 0, 0), -0.22233453129679548),\n",
|
||||
" (datetime.datetime(2020, 3, 27, 0, 0), -0.21821047890707101),\n",
|
||||
" (datetime.datetime(2020, 3, 30, 0, 0), -0.2572613339750828),\n",
|
||||
" (datetime.datetime(2020, 3, 31, 0, 0), -0.23261195549549218),\n",
|
||||
" (datetime.datetime(2020, 4, 1, 0, 0), -0.2608607426811047),\n",
|
||||
" (datetime.datetime(2020, 4, 3, 0, 0), -0.27431740614334477),\n",
|
||||
" (datetime.datetime(2020, 4, 7, 0, 0), -0.2134398339479976),\n",
|
||||
" (datetime.datetime(2020, 4, 8, 0, 0), -0.20755173891175982),\n",
|
||||
" (datetime.datetime(2020, 4, 9, 0, 0), -0.18395973278558087),\n",
|
||||
" (datetime.datetime(2020, 4, 13, 0, 0), -0.19529673178409412),\n",
|
||||
" (datetime.datetime(2020, 4, 15, 0, 0), -0.20106882889523636),\n",
|
||||
" (datetime.datetime(2020, 4, 16, 0, 0), -0.1970295580918935),\n",
|
||||
" (datetime.datetime(2020, 4, 17, 0, 0), -0.1732330992098331),\n",
|
||||
" (datetime.datetime(2020, 4, 20, 0, 0), -0.16734041380324138),\n",
|
||||
" (datetime.datetime(2020, 4, 21, 0, 0), -0.19352467752012048),\n",
|
||||
" (datetime.datetime(2020, 4, 23, 0, 0), -0.15569230769230757),\n",
|
||||
" (datetime.datetime(2020, 4, 24, 0, 0), -0.17741518697626335),\n",
|
||||
" (datetime.datetime(2020, 4, 27, 0, 0), -0.1667833069357988),\n",
|
||||
" (datetime.datetime(2020, 4, 28, 0, 0), -0.1604110648642676),\n",
|
||||
" (datetime.datetime(2020, 4, 29, 0, 0), -0.14832958856679812),\n",
|
||||
" (datetime.datetime(2020, 4, 30, 0, 0), -0.1300687474725194),\n",
|
||||
" (datetime.datetime(2020, 5, 4, 0, 0), -0.17366232326032705),\n",
|
||||
" (datetime.datetime(2020, 5, 5, 0, 0), -0.1822936881988726),\n",
|
||||
" (datetime.datetime(2020, 5, 6, 0, 0), -0.1722083628104405),\n",
|
||||
" (datetime.datetime(2020, 5, 7, 0, 0), -0.17076925965564504),\n",
|
||||
" (datetime.datetime(2020, 5, 8, 0, 0), -0.15704080857208003),\n",
|
||||
" (datetime.datetime(2020, 5, 11, 0, 0), -0.1536333632218556),\n",
|
||||
" (datetime.datetime(2020, 5, 12, 0, 0), -0.15922315279394084),\n",
|
||||
" (datetime.datetime(2020, 5, 13, 0, 0), -0.12893477713422308),\n",
|
||||
" (datetime.datetime(2020, 5, 14, 0, 0), -0.1515904189772027),\n",
|
||||
" (datetime.datetime(2020, 5, 15, 0, 0), -0.1482976040353089),\n",
|
||||
" (datetime.datetime(2020, 5, 18, 0, 0), -0.19486496766831485),\n",
|
||||
" (datetime.datetime(2020, 5, 19, 0, 0), -0.19478889311525294),\n",
|
||||
" (datetime.datetime(2020, 5, 20, 0, 0), -0.20504325418737346),\n",
|
||||
" (datetime.datetime(2020, 5, 21, 0, 0), -0.1923849185691976),\n",
|
||||
" (datetime.datetime(2020, 5, 22, 0, 0), -0.20265491640901256),\n",
|
||||
" (datetime.datetime(2020, 5, 26, 0, 0), -0.21261575969288427),\n",
|
||||
" (datetime.datetime(2020, 5, 27, 0, 0), -0.1977462346949832),\n",
|
||||
" (datetime.datetime(2020, 5, 28, 0, 0), -0.18100478037341028),\n",
|
||||
" (datetime.datetime(2020, 5, 29, 0, 0), -0.16737799894662286),\n",
|
||||
" (datetime.datetime(2020, 6, 1, 0, 0), -0.1486066432934544),\n",
|
||||
" (datetime.datetime(2020, 6, 2, 0, 0), -0.1406549318682908),\n",
|
||||
" (datetime.datetime(2020, 6, 3, 0, 0), -0.1455950320312639),\n",
|
||||
" (datetime.datetime(2020, 6, 4, 0, 0), -0.14420304132112982),\n",
|
||||
" (datetime.datetime(2020, 6, 5, 0, 0), -0.13168311511525865),\n",
|
||||
" (datetime.datetime(2020, 6, 8, 0, 0), -0.11935565702688988),\n",
|
||||
" (datetime.datetime(2020, 6, 9, 0, 0), -0.13055374356744232),\n",
|
||||
" (datetime.datetime(2020, 6, 10, 0, 0), -0.12668580404051355),\n",
|
||||
" (datetime.datetime(2020, 6, 11, 0, 0), -0.14811351293025943),\n",
|
||||
" (datetime.datetime(2020, 6, 12, 0, 0), -0.13644004989063818),\n",
|
||||
" (datetime.datetime(2020, 6, 15, 0, 0), -0.14417647273124712),\n",
|
||||
" (datetime.datetime(2020, 6, 16, 0, 0), -0.13541476920835016),\n",
|
||||
" (datetime.datetime(2020, 6, 17, 0, 0), -0.12496542567903979),\n",
|
||||
" (datetime.datetime(2020, 6, 18, 0, 0), -0.10886799410029502),\n",
|
||||
" (datetime.datetime(2020, 6, 19, 0, 0), -0.09316449153637418),\n",
|
||||
" (datetime.datetime(2020, 6, 22, 0, 0), -0.09261870319166465),\n",
|
||||
" (datetime.datetime(2020, 6, 23, 0, 0), -0.07956272545824083),\n",
|
||||
" (datetime.datetime(2020, 6, 24, 0, 0), -0.09426049373672252),\n",
|
||||
" (datetime.datetime(2020, 6, 25, 0, 0), -0.10081348053457295),\n",
|
||||
" (datetime.datetime(2020, 6, 26, 0, 0), -0.09618408922470667),\n",
|
||||
" (datetime.datetime(2020, 6, 29, 0, 0), -0.10191913883401882),\n",
|
||||
" (datetime.datetime(2020, 6, 30, 0, 0), -0.10248092640582795),\n",
|
||||
" (datetime.datetime(2020, 7, 1, 0, 0), -0.09865244649419913),\n",
|
||||
" (datetime.datetime(2020, 7, 2, 0, 0), -0.09126384692849943),\n",
|
||||
" (datetime.datetime(2020, 7, 3, 0, 0), -0.08705088880518042),\n",
|
||||
" (datetime.datetime(2020, 7, 6, 0, 0), -0.06379048033036305),\n",
|
||||
" (datetime.datetime(2020, 7, 7, 0, 0), -0.05848366297181784),\n",
|
||||
" (datetime.datetime(2020, 7, 8, 0, 0), -0.045594224361347635),\n",
|
||||
" (datetime.datetime(2020, 7, 9, 0, 0), -0.039114513981358234),\n",
|
||||
" (datetime.datetime(2020, 7, 10, 0, 0), -0.03792507846888182),\n",
|
||||
" (datetime.datetime(2020, 7, 13, 0, 0), -0.04068015895018928),\n",
|
||||
" (datetime.datetime(2020, 7, 14, 0, 0), -0.05505960632104223),\n",
|
||||
" (datetime.datetime(2020, 7, 15, 0, 0), -0.058529292332681115),\n",
|
||||
" (datetime.datetime(2020, 7, 16, 0, 0), -0.05489779859827626),\n",
|
||||
" (datetime.datetime(2020, 7, 17, 0, 0), -0.04157081827144271),\n",
|
||||
" (datetime.datetime(2020, 7, 20, 0, 0), -0.008800284000672676),\n",
|
||||
" (datetime.datetime(2020, 7, 21, 0, 0), 0.002092636535191872),\n",
|
||||
" (datetime.datetime(2020, 7, 22, 0, 0), 0.0022844730731781393),\n",
|
||||
" (datetime.datetime(2020, 7, 23, 0, 0), 0.014283837303151303),\n",
|
||||
" (datetime.datetime(2020, 7, 24, 0, 0), 0.017490781885222795),\n",
|
||||
" (datetime.datetime(2020, 7, 27, 0, 0), 0.0014461451779510526),\n",
|
||||
" (datetime.datetime(2020, 7, 28, 0, 0), 0.010423513944971319),\n",
|
||||
" (datetime.datetime(2020, 7, 29, 0, 0), 0.014873903404892141),\n",
|
||||
" (datetime.datetime(2020, 7, 30, 0, 0), 0.021221125275567854),\n",
|
||||
" (datetime.datetime(2020, 7, 31, 0, 0), 0.017523096892418044),\n",
|
||||
" (datetime.datetime(2020, 8, 3, 0, 0), 0.017039424171667816),\n",
|
||||
" (datetime.datetime(2020, 8, 4, 0, 0), 0.03604716234731087),\n",
|
||||
" (datetime.datetime(2020, 8, 5, 0, 0), 0.05061139977341078),\n",
|
||||
" (datetime.datetime(2020, 8, 6, 0, 0), 0.05082975513519794),\n",
|
||||
" (datetime.datetime(2020, 8, 7, 0, 0), 0.05958251310737306),\n",
|
||||
" (datetime.datetime(2020, 8, 10, 0, 0), 0.048723986751670445),\n",
|
||||
" (datetime.datetime(2020, 8, 11, 0, 0), 0.05220837401642653),\n",
|
||||
" (datetime.datetime(2020, 8, 12, 0, 0), 0.05186376428694506),\n",
|
||||
" (datetime.datetime(2020, 8, 13, 0, 0), 0.07394496484839053),\n",
|
||||
" (datetime.datetime(2020, 8, 14, 0, 0), 0.05147838833490859),\n",
|
||||
" (datetime.datetime(2020, 8, 17, 0, 0), 0.05283004347993381),\n",
|
||||
" (datetime.datetime(2020, 8, 18, 0, 0), 0.06824040940397857),\n",
|
||||
" (datetime.datetime(2020, 8, 19, 0, 0), 0.07100728132024359),\n",
|
||||
" (datetime.datetime(2020, 10, 8, 0, 0), 0.09372370534689822),\n",
|
||||
" (datetime.datetime(2020, 10, 9, 0, 0), 0.08128249892061357),\n",
|
||||
" (datetime.datetime(2020, 10, 12, 0, 0), 0.08653955068906938),\n",
|
||||
" (datetime.datetime(2020, 10, 13, 0, 0), 0.08506701906739678),\n",
|
||||
" (datetime.datetime(2020, 10, 14, 0, 0), 0.08405050922620161),\n",
|
||||
" (datetime.datetime(2020, 10, 15, 0, 0), 0.05063125897469378),\n",
|
||||
" (datetime.datetime(2020, 10, 16, 0, 0), 0.060133007954397355),\n",
|
||||
" (datetime.datetime(2020, 10, 19, 0, 0), 0.04674158943297102),\n",
|
||||
" (datetime.datetime(2020, 10, 20, 0, 0), 0.04907684448660876),\n",
|
||||
" (datetime.datetime(2020, 10, 21, 0, 0), 0.052287820185360934),\n",
|
||||
" (datetime.datetime(2020, 10, 22, 0, 0), 0.05187688373367427),\n",
|
||||
" (datetime.datetime(2020, 10, 23, 0, 0), 0.05667055904247564),\n",
|
||||
" (datetime.datetime(2020, 10, 26, 0, 0), 0.04027605345797136),\n",
|
||||
" (datetime.datetime(2020, 10, 27, 0, 0), 0.04849193018330533),\n",
|
||||
" (datetime.datetime(2020, 10, 28, 0, 0), 0.03806689549404818),\n",
|
||||
" (datetime.datetime(2020, 10, 29, 0, 0), 0.014816143497757839),\n",
|
||||
" (datetime.datetime(2020, 10, 30, 0, 0), 0.00481137623180139),\n",
|
||||
" (datetime.datetime(2020, 11, 2, 0, 0), -0.00014131778837667142),\n",
|
||||
" (datetime.datetime(2020, 11, 3, 0, 0), 0.010563504681151636),\n",
|
||||
" (datetime.datetime(2020, 11, 4, 0, 0), 0.01794663654972828),\n",
|
||||
" (datetime.datetime(2020, 11, 5, 0, 0), 0.0394424147838115),\n",
|
||||
" (datetime.datetime(2020, 11, 6, 0, 0), 0.043924408336276866),\n",
|
||||
" (datetime.datetime(2020, 11, 9, 0, 0), 0.06426903481460511),\n",
|
||||
" (datetime.datetime(2020, 11, 10, 0, 0), 0.07422870082083222),\n",
|
||||
" (datetime.datetime(2020, 11, 11, 0, 0), 0.08174632645483015),\n",
|
||||
" (datetime.datetime(2020, 11, 12, 0, 0), 0.07851042385019369),\n",
|
||||
" (datetime.datetime(2020, 11, 13, 0, 0), 0.0942456954233204),\n",
|
||||
" (datetime.datetime(2020, 11, 17, 0, 0), 0.09901112922662514),\n",
|
||||
" (datetime.datetime(2020, 11, 18, 0, 0), 0.10079208973472964),\n",
|
||||
" (datetime.datetime(2020, 11, 19, 0, 0), 0.08264929654539355),\n",
|
||||
" (datetime.datetime(2020, 11, 20, 0, 0), 0.07989130434782621),\n",
|
||||
" (datetime.datetime(2020, 11, 23, 0, 0), 0.0914305886506046),\n",
|
||||
" (datetime.datetime(2020, 11, 24, 0, 0), 0.10378607360338887),\n",
|
||||
" (datetime.datetime(2020, 11, 25, 0, 0), 0.07314267788989381),\n",
|
||||
" (datetime.datetime(2020, 11, 26, 0, 0), 0.08476710029374734),\n",
|
||||
" (datetime.datetime(2020, 11, 27, 0, 0), 0.07934822345629589),\n",
|
||||
" (datetime.datetime(2020, 12, 1, 0, 0), 0.09014280738418656),\n",
|
||||
" (datetime.datetime(2020, 12, 2, 0, 0), 0.09430073533264638),\n",
|
||||
" (datetime.datetime(2020, 12, 3, 0, 0), 0.10218081653420374),\n",
|
||||
" (datetime.datetime(2020, 12, 4, 0, 0), 0.10882414661443751),\n",
|
||||
" (datetime.datetime(2020, 12, 7, 0, 0), 0.13058534603084881),\n",
|
||||
" (datetime.datetime(2020, 12, 8, 0, 0), 0.13247583879573832),\n",
|
||||
" (datetime.datetime(2020, 12, 9, 0, 0), 0.14204505331544381),\n",
|
||||
" (datetime.datetime(2020, 12, 10, 0, 0), 0.14810928106435184),\n",
|
||||
" (datetime.datetime(2020, 12, 11, 0, 0), 0.14509213323883752),\n",
|
||||
" (datetime.datetime(2020, 12, 14, 0, 0), 0.12969764486762192),\n",
|
||||
" (datetime.datetime(2020, 12, 15, 0, 0), 0.1272258873087433),\n",
|
||||
" (datetime.datetime(2020, 12, 16, 0, 0), 0.1384985949417905),\n",
|
||||
" (datetime.datetime(2020, 12, 17, 0, 0), 0.1336538294659746),\n",
|
||||
" (datetime.datetime(2020, 12, 18, 0, 0), 0.13410538706550335),\n",
|
||||
" (datetime.datetime(2020, 12, 21, 0, 0), 0.09376186695204902),\n",
|
||||
" (datetime.datetime(2020, 12, 22, 0, 0), 0.1060517140194015),\n",
|
||||
" (datetime.datetime(2020, 12, 23, 0, 0), 0.12163516362002835),\n",
|
||||
" (datetime.datetime(2020, 12, 24, 0, 0), 0.1345174146595043),\n",
|
||||
" (datetime.datetime(2020, 12, 28, 0, 0), 0.13883233842862563),\n",
|
||||
" (datetime.datetime(2020, 12, 29, 0, 0), 0.14235188571822932),\n",
|
||||
" (datetime.datetime(2020, 12, 30, 0, 0), 0.1433421220424269),\n",
|
||||
" (datetime.datetime(2020, 12, 31, 0, 0), 0.1496252444998356),\n",
|
||||
" (datetime.datetime(2021, 1, 1, 0, 0), 0.15306899176527566)]"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
@ -395,13 +189,21 @@
|
||||
"from_date = datetime.date(2020, 1, 1)\n",
|
||||
"to_date = datetime.date(2021, 1, 1)\n",
|
||||
"# print(ts.calculate_returns(to_date, years=7))\n",
|
||||
"ts.calculate_rolling_returns(from_date, to_date)"
|
||||
"rr = ts.calculate_rolling_returns(from_date, to_date)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "e5d357b4-4fe5-4a0a-8107-0ab6828d7c41",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
@ -415,7 +217,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.2"
|
||||
"version": "3.8.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
Loading…
Reference in New Issue
Block a user