Compare commits

..

3 Commits

3 changed files with 119 additions and 42 deletions

View File

@ -1,6 +1,8 @@
from __future__ import annotations
import datetime
import math
import statistics
from typing import Iterable, List, Literal, Mapping, Union
from dateutil.relativedelta import relativedelta
@ -190,7 +192,7 @@ class TimeSeries(TimeSeriesCore):
closest: Literal["previous", "next", "exact"] = "previous",
closest_max_days: int = -1,
if_not_found: Literal["fail", "nan"] = "fail",
compounding: bool = True,
annual_compounded_returns: bool = True,
interval_type: Literal["years", "months", "days"] = "years",
interval_value: int = 1,
date_format: str = None,
@ -268,7 +270,7 @@ class TimeSeries(TimeSeriesCore):
return as_on, float("NaN")
returns = current[1] / previous[1]
if compounding:
if annual_compounded_returns:
years = _interval_to_years(interval_type, interval_value)
returns = returns ** (1 / years)
return (current[0] if return_actual_date else as_on), returns - 1
@ -283,7 +285,7 @@ class TimeSeries(TimeSeriesCore):
prior_match: str = "closest",
closest: Literal["previous", "next", "exact"] = "previous",
if_not_found: Literal["fail", "nan"] = "fail",
compounding: bool = True,
annual_compounded_returns: bool = True,
interval_type: Literal["years", "months", "days"] = "years",
interval_value: int = 1,
date_format: str = None,
@ -370,7 +372,7 @@ class TimeSeries(TimeSeriesCore):
for i in dates:
returns = self.calculate_returns(
as_on=i,
compounding=compounding,
annual_compounded_returns=annual_compounded_returns,
interval_type=interval_type,
interval_value=interval_value,
as_on_match=as_on_match,
@ -382,6 +384,60 @@ class TimeSeries(TimeSeriesCore):
rolling_returns.sort()
return self.__class__(rolling_returns, self.frequency.symbol)
@date_parser(1, 2)
def volatility(
self,
from_date: Union[datetime.date, str],
to_date: Union[datetime.date, str],
frequency: Literal["D", "W", "M", "Q", "H", "Y"] = None,
as_on_match: str = "closest",
prior_match: str = "closest",
closest: Literal["previous", "next", "exact"] = "previous",
if_not_found: Literal["fail", "nan"] = "fail",
annual_compounded_returns: bool = None,
interval_type: Literal["years", "months", "days"] = "days",
interval_value: int = 1,
date_format: str = None,
annualize_volatility: bool = True,
):
"""Calculates the volatility of the time series.add()
The volatility is calculated as the standard deviaion of periodic returns.
The periodicity of returns is based on the periodicity of underlying data.
"""
if frequency is None:
frequency = self.frequency
else:
try:
frequency = getattr(AllFrequencies, frequency)
except AttributeError:
raise ValueError(f"Invalid argument for frequency {frequency}")
if annual_compounded_returns is None:
annual_compounded_returns = False if frequency.days <= 366 else True
rolling_returns = self.calculate_rolling_returns(
from_date=from_date,
to_date=to_date,
frequency=frequency.symbol,
as_on_match=as_on_match,
prior_match=prior_match,
closest=closest,
if_not_found=if_not_found,
annual_compounded_returns=annual_compounded_returns,
interval_type=interval_type,
interval_value=interval_value,
)
sd = statistics.stdev(rolling_returns.values)
if annualize_volatility:
if interval_type == "months":
sd *= math.sqrt(12)
elif interval_type == "days":
sd *= math.sqrt(252)
return sd
if __name__ == "__main__":
date_series = [

View File

@ -1,37 +1,58 @@
# type: ignore
import pandas as pd
if __name__ == "__main__":
from fincal.fincal import TimeSeries, create_date_series
import datetime
import time
dfd = pd.read_csv("test_files/nav_history_daily - Copy.csv")
dfd = dfd[dfd["amfi_code"] == 118825].reset_index(drop=True)
ts = TimeSeries([(i.date, i.nav) for i in dfd.itertuples()], frequency="D")
repr(ts)
# print(ts[['2022-01-31', '2021-05-28']])
import pandas as pd
# rr = ts.calculate_rolling_returns(from_date='2021-01-01', to_date='2022-01-01', frequency='D', interval_type='days', interval_value=30, compounding=False)
from fincal.fincal import TimeSeries
df = pd.read_csv('test_files/msft.csv')
df = df.sort_values(by='Date') # type: ignore
data_list = [(i.Date, i.Close) for i in df.itertuples()]
# data = [
# ("2020-01-01", 10),
# ("2020-02-01", 12),
# ("2020-03-01", 14),
# ("2020-04-01", 16),
# ("2020-05-01", 18),
# ("2020-06-01", 20),
# ("2020-07-01", 22),
# ("2020-08-01", 24),
# ("2020-09-01", 26),
# ("2020-10-01", 28),
# ("2020-11-01", 30),
# ("2020-12-01", 32),
# ("2021-01-01", 34),
# ]
start = time.time()
ts_data = TimeSeries(data_list, frequency='D', date_format='%d-%m-%Y')
print(f"Instantiation took {round((time.time() - start)*1000, 2)} ms")
# ts_data.fill_missing_days()
start = time.time()
# ts_data.calculate_returns(as_on=datetime.datetime(2022, 1, 4), closest='next', years=1)
rr = ts_data.calculate_rolling_returns(datetime.datetime(1994, 1, 1),
datetime.datetime(2022, 2, 17),
frequency='D',
as_on_match='next',
prior_match='previous',
closest='previous',
years=1)
# ts = TimeSeries(data, frequency="M")
# rr = ts.calculate_rolling_returns(
# "2020-02-01",
# "2021-01-01",
# if_not_found="nan",
# compounding=False,
# interval_type="months",
# interval_value=1,
# as_on_match="exact",
# )
# ffill_data = ts_data.bfill()
print(f"Calculation took {round((time.time() - start)*1000, 2)} ms")
rr.sort()
for i in rr[:10]:
print(i)
# print(ffill_data)
# print(ts_data)
# print(repr(ts_data))
# for i in rr:
# print(i)
# returns = ts.calculate_returns(
# "2020-04-25",
# return_actual_date=True,
# closest_max_days=15,
# compounding=True,
# interval_type="days",
# interval_value=90,
# closest="previous",
# if_not_found="fail",
# )
# print(returns)
volatility = ts.volatility(start_date="2018-01-01", end_date="2021-01-01")
print(volatility)

View File

@ -199,17 +199,17 @@ class TestReturns:
def test_returns_calc(self):
ts = TimeSeries(self.data, frequency="M")
returns = ts.calculate_returns("2021-01-01", compounding=False, interval_type="years", interval_value=1)
returns = ts.calculate_returns("2021-01-01", annual_compounded_returns=False, interval_type="years", interval_value=1)
assert returns[1] == 2.4
returns = ts.calculate_returns("2020-04-01", compounding=False, interval_type="months", interval_value=3)
returns = ts.calculate_returns("2020-04-01", annual_compounded_returns=False, interval_type="months", interval_value=3)
assert round(returns[1], 4) == 0.6
returns = ts.calculate_returns("2020-04-01", compounding=True, interval_type="months", interval_value=3)
returns = ts.calculate_returns("2020-04-01", annual_compounded_returns=True, interval_type="months", interval_value=3)
assert round(returns[1], 4) == 5.5536
returns = ts.calculate_returns("2020-04-01", compounding=False, interval_type="days", interval_value=90)
returns = ts.calculate_returns("2020-04-01", annual_compounded_returns=False, interval_type="days", interval_value=90)
assert round(returns[1], 4) == 0.6
returns = ts.calculate_returns("2020-04-01", compounding=True, interval_type="days", interval_value=90)
returns = ts.calculate_returns("2020-04-01", annual_compounded_returns=True, interval_type="days", interval_value=90)
assert round(returns[1], 4) == 5.727
returns = ts.calculate_returns("2020-04-10", compounding=True, interval_type="days", interval_value=90)
returns = ts.calculate_returns("2020-04-10", annual_compounded_returns=True, interval_type="days", interval_value=90)
assert round(returns[1], 4) == 5.727
with pytest.raises(DateNotFoundError):
ts.calculate_returns("2020-04-10", interval_type="days", interval_value=90, as_on_match="exact")
@ -220,7 +220,7 @@ class TestReturns:
ts = TimeSeries(self.data, frequency="M")
FincalOptions.date_format = "%d-%m-%Y"
with pytest.raises(ValueError):
ts.calculate_returns("2020-04-10", compounding=True, interval_type="days", interval_value=90)
ts.calculate_returns("2020-04-10", annual_compounded_returns=True, interval_type="days", interval_value=90)
returns1 = ts.calculate_returns("2020-04-10", interval_type="days", interval_value=90, date_format="%Y-%m-%d")
returns2 = ts.calculate_returns("10-04-2020", interval_type="days", interval_value=90)
@ -228,7 +228,7 @@ class TestReturns:
FincalOptions.date_format = "%m-%d-%Y"
with pytest.raises(ValueError):
ts.calculate_returns("2020-04-10", compounding=True, interval_type="days", interval_value=90)
ts.calculate_returns("2020-04-10", annual_compounded_returns=True, interval_type="days", interval_value=90)
returns1 = ts.calculate_returns("2020-04-10", interval_type="days", interval_value=90, date_format="%Y-%m-%d")
returns2 = ts.calculate_returns("04-10-2020", interval_type="days", interval_value=90)