Compare commits
	
		
			4 Commits
		
	
	
		
			177e3bc4c8
			...
			da2993ebf0
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| da2993ebf0 | |||
| f41b9c7519 | |||
| 7504c840eb | |||
| 1682fe12cc | 
@ -29,12 +29,13 @@ Fincal aims to simplify things by allowing you to:
 | 
			
		||||
- [x] Sync two TimeSeries
 | 
			
		||||
- [x] Average rolling return
 | 
			
		||||
- [x] Sharpe ratio
 | 
			
		||||
- [ ] Jensen's Alpha
 | 
			
		||||
- [ ] Beta
 | 
			
		||||
- [x] Jensen's Alpha
 | 
			
		||||
- [x] Beta
 | 
			
		||||
- [ ] Sortino ratio
 | 
			
		||||
- [ ] Correlation & R-squared
 | 
			
		||||
- [ ] Treynor ratio
 | 
			
		||||
- [x] Max drawdown
 | 
			
		||||
- [ ] Moving average
 | 
			
		||||
 | 
			
		||||
### Pending implementation
 | 
			
		||||
- [x] Use limit parameter in ffill and bfill
 | 
			
		||||
 | 
			
		||||
@ -22,7 +22,71 @@ def sharpe_ratio(
 | 
			
		||||
    prior_match: str = "closest",
 | 
			
		||||
    closest: Literal["previous", "next"] = "previous",
 | 
			
		||||
    date_format: str = None,
 | 
			
		||||
):
 | 
			
		||||
) -> float:
 | 
			
		||||
    """Calculate the Sharpe ratio of any time series
 | 
			
		||||
 | 
			
		||||
    Sharpe ratio is a measure of returns per unit of risk,
 | 
			
		||||
    where risk is measured by the standard deviation of the returns.
 | 
			
		||||
 | 
			
		||||
    The formula for Sharpe ratio is:
 | 
			
		||||
        (average asset return - risk free rate)/volatility of asset returns
 | 
			
		||||
 | 
			
		||||
    Parameters
 | 
			
		||||
    ----------
 | 
			
		||||
    time_series_data:
 | 
			
		||||
        The time series for which Sharpe ratio needs to be calculated
 | 
			
		||||
 | 
			
		||||
    risk_free_data:
 | 
			
		||||
        Risk free rates as time series data.
 | 
			
		||||
        This should be the time series of risk free returns,
 | 
			
		||||
        and not the underlying asset value.
 | 
			
		||||
 | 
			
		||||
    risk_free_rate:
 | 
			
		||||
        Risk free rate to be used.
 | 
			
		||||
        Either risk_free_data or risk_free_rate needs to be provided.
 | 
			
		||||
        If both are provided, the time series data will be used.
 | 
			
		||||
 | 
			
		||||
    from_date:
 | 
			
		||||
        Start date from which returns should be calculated.
 | 
			
		||||
        Defaults to the first date of the series.
 | 
			
		||||
 | 
			
		||||
    to_date:
 | 
			
		||||
        End date till which returns should be calculated.
 | 
			
		||||
        Defaults to the last date of the series.
 | 
			
		||||
 | 
			
		||||
    frequency:
 | 
			
		||||
        The frequency at which returns should be calculated.
 | 
			
		||||
 | 
			
		||||
    return_period_unit : 'years', 'months', 'days'
 | 
			
		||||
        The type of time period to use for return calculation.
 | 
			
		||||
 | 
			
		||||
    return_period_value : int
 | 
			
		||||
        The value of the specified interval type over which returns needs to be calculated.
 | 
			
		||||
 | 
			
		||||
    as_on_match : str, optional
 | 
			
		||||
            The mode of matching the as_on_date. Refer closest.
 | 
			
		||||
 | 
			
		||||
    prior_match : str, optional
 | 
			
		||||
        The mode of matching the prior_date. Refer closest.
 | 
			
		||||
 | 
			
		||||
    closest : str, optional
 | 
			
		||||
        The mode of matching the closest date.
 | 
			
		||||
        Valid values are 'exact', 'previous', 'next' and next.
 | 
			
		||||
 | 
			
		||||
    The date format to use for this operation.
 | 
			
		||||
            Should be passed as a datetime library compatible string.
 | 
			
		||||
            Sets the date format only for this operation. To set it globally, use FincalOptions.date_format
 | 
			
		||||
 | 
			
		||||
    Returns
 | 
			
		||||
    -------
 | 
			
		||||
        Value of Sharpe ratio as a float.
 | 
			
		||||
 | 
			
		||||
    Raises
 | 
			
		||||
    ------
 | 
			
		||||
    ValueError
 | 
			
		||||
        If risk free data or risk free rate is not provided.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    interval_days = int(_interval_to_years(return_period_unit, return_period_value) * 365 + 1)
 | 
			
		||||
 | 
			
		||||
    if from_date is None:
 | 
			
		||||
@ -71,9 +135,168 @@ def beta(
 | 
			
		||||
    prior_match: str = "closest",
 | 
			
		||||
    closest: Literal["previous", "next"] = "previous",
 | 
			
		||||
    date_format: str = None,
 | 
			
		||||
):
 | 
			
		||||
) -> float:
 | 
			
		||||
    """Beta is a measure of sensitivity of asset returns to market returns
 | 
			
		||||
 | 
			
		||||
    interval_days = int(_interval_to_years(return_period_unit, return_period_value) * 365 + 1)
 | 
			
		||||
    The formula for beta is:
 | 
			
		||||
 | 
			
		||||
    Parameters
 | 
			
		||||
    ----------
 | 
			
		||||
    asset_data : TimeSeries
 | 
			
		||||
        The time series data of the asset
 | 
			
		||||
 | 
			
		||||
    market_data : TimeSeries
 | 
			
		||||
        The time series data of the relevant market index
 | 
			
		||||
 | 
			
		||||
    from_date:
 | 
			
		||||
        Start date from which returns should be calculated.
 | 
			
		||||
        Defaults to the first date of the series.
 | 
			
		||||
 | 
			
		||||
    to_date:
 | 
			
		||||
        End date till which returns should be calculated.
 | 
			
		||||
        Defaults to the last date of the series.
 | 
			
		||||
 | 
			
		||||
    frequency:
 | 
			
		||||
        The frequency at which returns should be calculated.
 | 
			
		||||
 | 
			
		||||
    return_period_unit : 'years', 'months', 'days'
 | 
			
		||||
        The type of time period to use for return calculation.
 | 
			
		||||
 | 
			
		||||
    return_period_value : int
 | 
			
		||||
        The value of the specified interval type over which returns needs to be calculated.
 | 
			
		||||
 | 
			
		||||
    as_on_match : str, optional
 | 
			
		||||
            The mode of matching the as_on_date. Refer closest.
 | 
			
		||||
 | 
			
		||||
    prior_match : str, optional
 | 
			
		||||
        The mode of matching the prior_date. Refer closest.
 | 
			
		||||
 | 
			
		||||
    closest : str, optional
 | 
			
		||||
        The mode of matching the closest date.
 | 
			
		||||
        Valid values are 'exact', 'previous', 'next' and next.
 | 
			
		||||
 | 
			
		||||
    The date format to use for this operation.
 | 
			
		||||
            Should be passed as a datetime library compatible string.
 | 
			
		||||
            Sets the date format only for this operation. To set it globally, use FincalOptions.date_format
 | 
			
		||||
 | 
			
		||||
    Returns
 | 
			
		||||
    -------
 | 
			
		||||
        The value of beta as a float.
 | 
			
		||||
    """
 | 
			
		||||
    interval_years = _interval_to_years(return_period_unit, return_period_value)
 | 
			
		||||
    interval_days = int(interval_years * 365 + 1)
 | 
			
		||||
 | 
			
		||||
    annual_compounded_returns = True if interval_years > 1 else False
 | 
			
		||||
 | 
			
		||||
    if from_date is None:
 | 
			
		||||
        from_date = asset_data.start_date + datetime.timedelta(days=interval_days)
 | 
			
		||||
    if to_date is None:
 | 
			
		||||
        to_date = asset_data.end_date
 | 
			
		||||
 | 
			
		||||
    common_params = {
 | 
			
		||||
        "from_date": from_date,
 | 
			
		||||
        "to_date": to_date,
 | 
			
		||||
        "frequency": frequency,
 | 
			
		||||
        "return_period_unit": return_period_unit,
 | 
			
		||||
        "return_period_value": return_period_value,
 | 
			
		||||
        "as_on_match": as_on_match,
 | 
			
		||||
        "prior_match": prior_match,
 | 
			
		||||
        "closest": closest,
 | 
			
		||||
        "date_format": date_format,
 | 
			
		||||
        "annual_compounded_returns": annual_compounded_returns,
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    asset_rr = asset_data.calculate_rolling_returns(**common_params)
 | 
			
		||||
    market_rr = market_data.calculate_rolling_returns(**common_params)
 | 
			
		||||
 | 
			
		||||
    cov = statistics.covariance(asset_rr.values, market_rr.values)
 | 
			
		||||
    market_var = statistics.variance(market_rr.values)
 | 
			
		||||
 | 
			
		||||
    beta = cov / market_var
 | 
			
		||||
    return beta
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def jensens_alpha(
 | 
			
		||||
    asset_data: TimeSeries,
 | 
			
		||||
    market_data: TimeSeries,
 | 
			
		||||
    risk_free_data: TimeSeries = None,
 | 
			
		||||
    risk_free_rate: float = None,
 | 
			
		||||
    from_date: str | datetime.datetime = None,
 | 
			
		||||
    to_date: str | datetime.datetime = None,
 | 
			
		||||
    frequency: Literal["D", "W", "M", "Q", "H", "Y"] = None,
 | 
			
		||||
    return_period_unit: Literal["years", "months", "days"] = "years",
 | 
			
		||||
    return_period_value: int = 1,
 | 
			
		||||
    as_on_match: str = "closest",
 | 
			
		||||
    prior_match: str = "closest",
 | 
			
		||||
    closest: Literal["previous", "next"] = "previous",
 | 
			
		||||
    date_format: str = None,
 | 
			
		||||
) -> float:
 | 
			
		||||
    """
 | 
			
		||||
    This function calculates the Jensen's alpha for a time series.
 | 
			
		||||
    The formula for Jensen's alpha is:
 | 
			
		||||
        Ri - Rf + B x (Rm - Rf)
 | 
			
		||||
    where:
 | 
			
		||||
        Ri = Realized return of the portfolio or investment
 | 
			
		||||
        Rf = The risk free rate during the return time frame
 | 
			
		||||
        B = Beta of the portfolio or investment
 | 
			
		||||
        Rm = Realized return of the market index
 | 
			
		||||
 | 
			
		||||
    Parameters
 | 
			
		||||
    ----------
 | 
			
		||||
    asset_data : TimeSeries
 | 
			
		||||
        The time series data of the asset
 | 
			
		||||
 | 
			
		||||
    market_data : TimeSeries
 | 
			
		||||
        The time series data of the relevant market index
 | 
			
		||||
 | 
			
		||||
    risk_free_data:
 | 
			
		||||
        Risk free rates as time series data.
 | 
			
		||||
        This should be the time series of risk free returns,
 | 
			
		||||
        and not the underlying asset value.
 | 
			
		||||
 | 
			
		||||
    risk_free_rate:
 | 
			
		||||
        Risk free rate to be used.
 | 
			
		||||
        Either risk_free_data or risk_free_rate needs to be provided.
 | 
			
		||||
        If both are provided, the time series data will be used.
 | 
			
		||||
 | 
			
		||||
    from_date:
 | 
			
		||||
        Start date from which returns should be calculated.
 | 
			
		||||
        Defaults to the first date of the series.
 | 
			
		||||
 | 
			
		||||
    to_date:
 | 
			
		||||
        End date till which returns should be calculated.
 | 
			
		||||
        Defaults to the last date of the series.
 | 
			
		||||
 | 
			
		||||
    frequency:
 | 
			
		||||
        The frequency at which returns should be calculated.
 | 
			
		||||
 | 
			
		||||
    return_period_unit : 'years', 'months', 'days'
 | 
			
		||||
        The type of time period to use for return calculation.
 | 
			
		||||
 | 
			
		||||
    return_period_value : int
 | 
			
		||||
        The value of the specified interval type over which returns needs to be calculated.
 | 
			
		||||
 | 
			
		||||
    as_on_match : str, optional
 | 
			
		||||
            The mode of matching the as_on_date. Refer closest.
 | 
			
		||||
 | 
			
		||||
    prior_match : str, optional
 | 
			
		||||
        The mode of matching the prior_date. Refer closest.
 | 
			
		||||
 | 
			
		||||
    closest : str, optional
 | 
			
		||||
        The mode of matching the closest date.
 | 
			
		||||
        Valid values are 'exact', 'previous', 'next' and next.
 | 
			
		||||
 | 
			
		||||
    The date format to use for this operation.
 | 
			
		||||
            Should be passed as a datetime library compatible string.
 | 
			
		||||
            Sets the date format only for this operation. To set it globally, use FincalOptions.date_format
 | 
			
		||||
 | 
			
		||||
    Returns
 | 
			
		||||
    -------
 | 
			
		||||
        The value of Jensen's alpha as a float.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    interval_years = _interval_to_years(return_period_unit, return_period_value)
 | 
			
		||||
    interval_days = int(interval_years * 365 + 1)
 | 
			
		||||
 | 
			
		||||
    if from_date is None:
 | 
			
		||||
        from_date = asset_data.start_date + datetime.timedelta(days=interval_days)
 | 
			
		||||
@ -92,11 +315,34 @@ def beta(
 | 
			
		||||
        "date_format": date_format,
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    asset_rr = asset_data.calculate_rolling_returns(**common_params)
 | 
			
		||||
    market_rr = market_data.calculate_rolling_returns(**common_params)
 | 
			
		||||
    num_days = (to_date - from_date).days
 | 
			
		||||
    compound_realised_returns = True if num_days > 365 else False
 | 
			
		||||
    realized_return = asset_data.calculate_returns(
 | 
			
		||||
        as_on=to_date,
 | 
			
		||||
        return_period_unit="days",
 | 
			
		||||
        return_period_value=num_days,
 | 
			
		||||
        annual_compounded_returns=compound_realised_returns,
 | 
			
		||||
        as_on_match=as_on_match,
 | 
			
		||||
        prior_match=prior_match,
 | 
			
		||||
        closest=closest,
 | 
			
		||||
        date_format=date_format,
 | 
			
		||||
    )
 | 
			
		||||
    market_return = market_data.calculate_returns(
 | 
			
		||||
        as_on=to_date,
 | 
			
		||||
        return_period_unit="days",
 | 
			
		||||
        return_period_value=num_days,
 | 
			
		||||
        annual_compounded_returns=compound_realised_returns,
 | 
			
		||||
        as_on_match=as_on_match,
 | 
			
		||||
        prior_match=prior_match,
 | 
			
		||||
        closest=closest,
 | 
			
		||||
        date_format=date_format,
 | 
			
		||||
    )
 | 
			
		||||
    beta_value = beta(asset_data=asset_data, market_data=market_data, **common_params)
 | 
			
		||||
 | 
			
		||||
    cov = statistics.covariance(asset_rr.values, market_rr.values)
 | 
			
		||||
    market_var = statistics.variance(market_rr.values)
 | 
			
		||||
    if risk_free_data is None and risk_free_rate is None:
 | 
			
		||||
        raise ValueError("At least one of risk_free_data or risk_free rate is required")
 | 
			
		||||
    elif risk_free_data is not None:
 | 
			
		||||
        risk_free_rate = risk_free_data.mean()
 | 
			
		||||
 | 
			
		||||
    beta = cov / market_var
 | 
			
		||||
    return beta
 | 
			
		||||
    jensens_alpha = realized_return[1] - risk_free_rate + beta_value * (market_return[1] - risk_free_rate)
 | 
			
		||||
    return jensens_alpha
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user