Compare commits
4 Commits
177e3bc4c8
...
da2993ebf0
Author | SHA1 | Date | |
---|---|---|---|
da2993ebf0 | |||
f41b9c7519 | |||
7504c840eb | |||
1682fe12cc |
@ -29,12 +29,13 @@ Fincal aims to simplify things by allowing you to:
|
||||
- [x] Sync two TimeSeries
|
||||
- [x] Average rolling return
|
||||
- [x] Sharpe ratio
|
||||
- [ ] Jensen's Alpha
|
||||
- [ ] Beta
|
||||
- [x] Jensen's Alpha
|
||||
- [x] Beta
|
||||
- [ ] Sortino ratio
|
||||
- [ ] Correlation & R-squared
|
||||
- [ ] Treynor ratio
|
||||
- [x] Max drawdown
|
||||
- [ ] Moving average
|
||||
|
||||
### Pending implementation
|
||||
- [x] Use limit parameter in ffill and bfill
|
||||
|
@ -22,7 +22,71 @@ def sharpe_ratio(
|
||||
prior_match: str = "closest",
|
||||
closest: Literal["previous", "next"] = "previous",
|
||||
date_format: str = None,
|
||||
):
|
||||
) -> float:
|
||||
"""Calculate the Sharpe ratio of any time series
|
||||
|
||||
Sharpe ratio is a measure of returns per unit of risk,
|
||||
where risk is measured by the standard deviation of the returns.
|
||||
|
||||
The formula for Sharpe ratio is:
|
||||
(average asset return - risk free rate)/volatility of asset returns
|
||||
|
||||
Parameters
|
||||
----------
|
||||
time_series_data:
|
||||
The time series for which Sharpe ratio needs to be calculated
|
||||
|
||||
risk_free_data:
|
||||
Risk free rates as time series data.
|
||||
This should be the time series of risk free returns,
|
||||
and not the underlying asset value.
|
||||
|
||||
risk_free_rate:
|
||||
Risk free rate to be used.
|
||||
Either risk_free_data or risk_free_rate needs to be provided.
|
||||
If both are provided, the time series data will be used.
|
||||
|
||||
from_date:
|
||||
Start date from which returns should be calculated.
|
||||
Defaults to the first date of the series.
|
||||
|
||||
to_date:
|
||||
End date till which returns should be calculated.
|
||||
Defaults to the last date of the series.
|
||||
|
||||
frequency:
|
||||
The frequency at which returns should be calculated.
|
||||
|
||||
return_period_unit : 'years', 'months', 'days'
|
||||
The type of time period to use for return calculation.
|
||||
|
||||
return_period_value : int
|
||||
The value of the specified interval type over which returns needs to be calculated.
|
||||
|
||||
as_on_match : str, optional
|
||||
The mode of matching the as_on_date. Refer closest.
|
||||
|
||||
prior_match : str, optional
|
||||
The mode of matching the prior_date. Refer closest.
|
||||
|
||||
closest : str, optional
|
||||
The mode of matching the closest date.
|
||||
Valid values are 'exact', 'previous', 'next' and next.
|
||||
|
||||
The date format to use for this operation.
|
||||
Should be passed as a datetime library compatible string.
|
||||
Sets the date format only for this operation. To set it globally, use FincalOptions.date_format
|
||||
|
||||
Returns
|
||||
-------
|
||||
Value of Sharpe ratio as a float.
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
If risk free data or risk free rate is not provided.
|
||||
"""
|
||||
|
||||
interval_days = int(_interval_to_years(return_period_unit, return_period_value) * 365 + 1)
|
||||
|
||||
if from_date is None:
|
||||
@ -71,9 +135,168 @@ def beta(
|
||||
prior_match: str = "closest",
|
||||
closest: Literal["previous", "next"] = "previous",
|
||||
date_format: str = None,
|
||||
):
|
||||
) -> float:
|
||||
"""Beta is a measure of sensitivity of asset returns to market returns
|
||||
|
||||
interval_days = int(_interval_to_years(return_period_unit, return_period_value) * 365 + 1)
|
||||
The formula for beta is:
|
||||
|
||||
Parameters
|
||||
----------
|
||||
asset_data : TimeSeries
|
||||
The time series data of the asset
|
||||
|
||||
market_data : TimeSeries
|
||||
The time series data of the relevant market index
|
||||
|
||||
from_date:
|
||||
Start date from which returns should be calculated.
|
||||
Defaults to the first date of the series.
|
||||
|
||||
to_date:
|
||||
End date till which returns should be calculated.
|
||||
Defaults to the last date of the series.
|
||||
|
||||
frequency:
|
||||
The frequency at which returns should be calculated.
|
||||
|
||||
return_period_unit : 'years', 'months', 'days'
|
||||
The type of time period to use for return calculation.
|
||||
|
||||
return_period_value : int
|
||||
The value of the specified interval type over which returns needs to be calculated.
|
||||
|
||||
as_on_match : str, optional
|
||||
The mode of matching the as_on_date. Refer closest.
|
||||
|
||||
prior_match : str, optional
|
||||
The mode of matching the prior_date. Refer closest.
|
||||
|
||||
closest : str, optional
|
||||
The mode of matching the closest date.
|
||||
Valid values are 'exact', 'previous', 'next' and next.
|
||||
|
||||
The date format to use for this operation.
|
||||
Should be passed as a datetime library compatible string.
|
||||
Sets the date format only for this operation. To set it globally, use FincalOptions.date_format
|
||||
|
||||
Returns
|
||||
-------
|
||||
The value of beta as a float.
|
||||
"""
|
||||
interval_years = _interval_to_years(return_period_unit, return_period_value)
|
||||
interval_days = int(interval_years * 365 + 1)
|
||||
|
||||
annual_compounded_returns = True if interval_years > 1 else False
|
||||
|
||||
if from_date is None:
|
||||
from_date = asset_data.start_date + datetime.timedelta(days=interval_days)
|
||||
if to_date is None:
|
||||
to_date = asset_data.end_date
|
||||
|
||||
common_params = {
|
||||
"from_date": from_date,
|
||||
"to_date": to_date,
|
||||
"frequency": frequency,
|
||||
"return_period_unit": return_period_unit,
|
||||
"return_period_value": return_period_value,
|
||||
"as_on_match": as_on_match,
|
||||
"prior_match": prior_match,
|
||||
"closest": closest,
|
||||
"date_format": date_format,
|
||||
"annual_compounded_returns": annual_compounded_returns,
|
||||
}
|
||||
|
||||
asset_rr = asset_data.calculate_rolling_returns(**common_params)
|
||||
market_rr = market_data.calculate_rolling_returns(**common_params)
|
||||
|
||||
cov = statistics.covariance(asset_rr.values, market_rr.values)
|
||||
market_var = statistics.variance(market_rr.values)
|
||||
|
||||
beta = cov / market_var
|
||||
return beta
|
||||
|
||||
|
||||
def jensens_alpha(
|
||||
asset_data: TimeSeries,
|
||||
market_data: TimeSeries,
|
||||
risk_free_data: TimeSeries = None,
|
||||
risk_free_rate: float = None,
|
||||
from_date: str | datetime.datetime = None,
|
||||
to_date: str | datetime.datetime = None,
|
||||
frequency: Literal["D", "W", "M", "Q", "H", "Y"] = None,
|
||||
return_period_unit: Literal["years", "months", "days"] = "years",
|
||||
return_period_value: int = 1,
|
||||
as_on_match: str = "closest",
|
||||
prior_match: str = "closest",
|
||||
closest: Literal["previous", "next"] = "previous",
|
||||
date_format: str = None,
|
||||
) -> float:
|
||||
"""
|
||||
This function calculates the Jensen's alpha for a time series.
|
||||
The formula for Jensen's alpha is:
|
||||
Ri - Rf + B x (Rm - Rf)
|
||||
where:
|
||||
Ri = Realized return of the portfolio or investment
|
||||
Rf = The risk free rate during the return time frame
|
||||
B = Beta of the portfolio or investment
|
||||
Rm = Realized return of the market index
|
||||
|
||||
Parameters
|
||||
----------
|
||||
asset_data : TimeSeries
|
||||
The time series data of the asset
|
||||
|
||||
market_data : TimeSeries
|
||||
The time series data of the relevant market index
|
||||
|
||||
risk_free_data:
|
||||
Risk free rates as time series data.
|
||||
This should be the time series of risk free returns,
|
||||
and not the underlying asset value.
|
||||
|
||||
risk_free_rate:
|
||||
Risk free rate to be used.
|
||||
Either risk_free_data or risk_free_rate needs to be provided.
|
||||
If both are provided, the time series data will be used.
|
||||
|
||||
from_date:
|
||||
Start date from which returns should be calculated.
|
||||
Defaults to the first date of the series.
|
||||
|
||||
to_date:
|
||||
End date till which returns should be calculated.
|
||||
Defaults to the last date of the series.
|
||||
|
||||
frequency:
|
||||
The frequency at which returns should be calculated.
|
||||
|
||||
return_period_unit : 'years', 'months', 'days'
|
||||
The type of time period to use for return calculation.
|
||||
|
||||
return_period_value : int
|
||||
The value of the specified interval type over which returns needs to be calculated.
|
||||
|
||||
as_on_match : str, optional
|
||||
The mode of matching the as_on_date. Refer closest.
|
||||
|
||||
prior_match : str, optional
|
||||
The mode of matching the prior_date. Refer closest.
|
||||
|
||||
closest : str, optional
|
||||
The mode of matching the closest date.
|
||||
Valid values are 'exact', 'previous', 'next' and next.
|
||||
|
||||
The date format to use for this operation.
|
||||
Should be passed as a datetime library compatible string.
|
||||
Sets the date format only for this operation. To set it globally, use FincalOptions.date_format
|
||||
|
||||
Returns
|
||||
-------
|
||||
The value of Jensen's alpha as a float.
|
||||
"""
|
||||
|
||||
interval_years = _interval_to_years(return_period_unit, return_period_value)
|
||||
interval_days = int(interval_years * 365 + 1)
|
||||
|
||||
if from_date is None:
|
||||
from_date = asset_data.start_date + datetime.timedelta(days=interval_days)
|
||||
@ -92,11 +315,34 @@ def beta(
|
||||
"date_format": date_format,
|
||||
}
|
||||
|
||||
asset_rr = asset_data.calculate_rolling_returns(**common_params)
|
||||
market_rr = market_data.calculate_rolling_returns(**common_params)
|
||||
num_days = (to_date - from_date).days
|
||||
compound_realised_returns = True if num_days > 365 else False
|
||||
realized_return = asset_data.calculate_returns(
|
||||
as_on=to_date,
|
||||
return_period_unit="days",
|
||||
return_period_value=num_days,
|
||||
annual_compounded_returns=compound_realised_returns,
|
||||
as_on_match=as_on_match,
|
||||
prior_match=prior_match,
|
||||
closest=closest,
|
||||
date_format=date_format,
|
||||
)
|
||||
market_return = market_data.calculate_returns(
|
||||
as_on=to_date,
|
||||
return_period_unit="days",
|
||||
return_period_value=num_days,
|
||||
annual_compounded_returns=compound_realised_returns,
|
||||
as_on_match=as_on_match,
|
||||
prior_match=prior_match,
|
||||
closest=closest,
|
||||
date_format=date_format,
|
||||
)
|
||||
beta_value = beta(asset_data=asset_data, market_data=market_data, **common_params)
|
||||
|
||||
cov = statistics.covariance(asset_rr.values, market_rr.values)
|
||||
market_var = statistics.variance(market_rr.values)
|
||||
if risk_free_data is None and risk_free_rate is None:
|
||||
raise ValueError("At least one of risk_free_data or risk_free rate is required")
|
||||
elif risk_free_data is not None:
|
||||
risk_free_rate = risk_free_data.mean()
|
||||
|
||||
beta = cov / market_var
|
||||
return beta
|
||||
jensens_alpha = realized_return[1] - risk_free_rate + beta_value * (market_return[1] - risk_free_rate)
|
||||
return jensens_alpha
|
||||
|
Loading…
Reference in New Issue
Block a user