Added Jensen's alpha to statistics

Also improved doc for beta
This commit is contained in:
Gourav Kumar 2022-06-04 21:30:34 +05:30
parent 7504c840eb
commit f41b9c7519
2 changed files with 145 additions and 10 deletions

View File

@ -29,8 +29,8 @@ Fincal aims to simplify things by allowing you to:
- [x] Sync two TimeSeries
- [x] Average rolling return
- [x] Sharpe ratio
- [ ] Jensen's Alpha
- [ ] Beta
- [x] Jensen's Alpha
- [x] Beta
- [ ] Sortino ratio
- [ ] Correlation & R-squared
- [ ] Treynor ratio

View File

@ -22,12 +22,15 @@ def sharpe_ratio(
prior_match: str = "closest",
closest: Literal["previous", "next"] = "previous",
date_format: str = None,
):
) -> float:
"""Calculate the Sharpe ratio of any time series
Sharpe ratio is a measure of returns per unit of risk,
where risk is measured by the standard deviation of the returns.
The formula for Sharpe ratio is:
(average asset return - risk free rate)/volatility of asset returns
Parameters
----------
time_series_data:
@ -60,23 +63,30 @@ def sharpe_ratio(
return_period_value : int
The value of the specified interval type over which returns needs to be calculated.
as_on_match:
as_on_match : str, optional
The mode of matching the as_on_date. Refer closest.
prior_match :
prior_match : str, optional
The mode of matching the prior_date. Refer closest.
closest :
closest : str, optional
The mode of matching the closest date.
Valid values are 'exact', 'previous', 'next' and next.
date_format :
The date format to use for this operation.
Should be passed as a datetime library compatible string.
Sets the date format only for this operation. To set it globally, use FincalOptions.date_format
Returns
-------
_description_
Value of Sharpe ratio as a float.
Raises
------
ValueError
_description_
If risk free data or risk free rate is not provided.
"""
interval_days = int(_interval_to_years(return_period_unit, return_period_value) * 365 + 1)
if from_date is None:
@ -125,7 +135,54 @@ def beta(
prior_match: str = "closest",
closest: Literal["previous", "next"] = "previous",
date_format: str = None,
):
) -> float:
"""Beta is a measure of sensitivity of asset returns to market returns
The formula for beta is:
Parameters
----------
asset_data : TimeSeries
The time series data of the asset
market_data : TimeSeries
The time series data of the relevant market index
from_date:
Start date from which returns should be calculated.
Defaults to the first date of the series.
to_date:
End date till which returns should be calculated.
Defaults to the last date of the series.
frequency:
The frequency at which returns should be calculated.
return_period_unit : 'years', 'months', 'days'
The type of time period to use for return calculation.
return_period_value : int
The value of the specified interval type over which returns needs to be calculated.
as_on_match : str, optional
The mode of matching the as_on_date. Refer closest.
prior_match : str, optional
The mode of matching the prior_date. Refer closest.
closest : str, optional
The mode of matching the closest date.
Valid values are 'exact', 'previous', 'next' and next.
The date format to use for this operation.
Should be passed as a datetime library compatible string.
Sets the date format only for this operation. To set it globally, use FincalOptions.date_format
Returns
-------
The value of beta as a float.
"""
interval_years = _interval_to_years(return_period_unit, return_period_value)
interval_days = int(interval_years * 365 + 1)
@ -157,3 +214,81 @@ def beta(
beta = cov / market_var
return beta
def jensens_alpha(
asset_data: TimeSeries,
market_data: TimeSeries,
risk_free_data: TimeSeries = None,
risk_free_rate: float = None,
from_date: str | datetime.datetime = None,
to_date: str | datetime.datetime = None,
frequency: Literal["D", "W", "M", "Q", "H", "Y"] = None,
return_period_unit: Literal["years", "months", "days"] = "years",
return_period_value: int = 1,
as_on_match: str = "closest",
prior_match: str = "closest",
closest: Literal["previous", "next"] = "previous",
date_format: str = None,
) -> float:
"""
This function calculates the Jensen's alpha for a time series.
The formula for Jensen's alpha is:
Ri - Rf + B x (Rm - Rf)
where:
Ri = Realized return of the portfolio or investment
Rf = The risk free rate during the return time frame
B = Beta of the portfolio or investment
Rm = Realized return of the market index
"""
interval_years = _interval_to_years(return_period_unit, return_period_value)
interval_days = int(interval_years * 365 + 1)
if from_date is None:
from_date = asset_data.start_date + datetime.timedelta(days=interval_days)
if to_date is None:
to_date = asset_data.end_date
common_params = {
"from_date": from_date,
"to_date": to_date,
"frequency": frequency,
"return_period_unit": return_period_unit,
"return_period_value": return_period_value,
"as_on_match": as_on_match,
"prior_match": prior_match,
"closest": closest,
"date_format": date_format,
}
num_days = (to_date - from_date).days
compound_realised_returns = True if num_days > 365 else False
realized_return = asset_data.calculate_returns(
as_on=to_date,
return_period_unit="days",
return_period_value=num_days,
annual_compounded_returns=compound_realised_returns,
as_on_match=as_on_match,
prior_match=prior_match,
closest=closest,
date_format=date_format,
)
market_return = market_data.calculate_returns(
as_on=to_date,
return_period_unit="days",
return_period_value=num_days,
annual_compounded_returns=compound_realised_returns,
as_on_match=as_on_match,
prior_match=prior_match,
closest=closest,
date_format=date_format,
)
beta_value = beta(asset_data=asset_data, market_data=market_data, **common_params)
if risk_free_data is None and risk_free_rate is None:
raise ValueError("At least one of risk_free_data or risk_free rate is required")
elif risk_free_data is not None:
risk_free_rate = risk_free_data.mean()
jensens_alpha = realized_return[1] - risk_free_rate + beta_value * (market_return[1] - risk_free_rate)
return jensens_alpha