Added volatility function
This commit is contained in:
parent
17b3e348a2
commit
24d5d253b5
@ -1,6 +1,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import datetime
|
||||
import statistics
|
||||
from typing import Iterable, List, Literal, Mapping, Union
|
||||
|
||||
from dateutil.relativedelta import relativedelta
|
||||
@ -382,6 +383,23 @@ class TimeSeries(TimeSeriesCore):
|
||||
rolling_returns.sort()
|
||||
return self.__class__(rolling_returns, self.frequency.symbol)
|
||||
|
||||
def volatility(
|
||||
self,
|
||||
start_date: Union[str, datetime.datetime],
|
||||
end_date: Union[str, datetime.datetime],
|
||||
annualized: bool = True,
|
||||
):
|
||||
"""Calculates the volatility of the time series.add()
|
||||
|
||||
The volatility is calculated as the standard deviaion of periodic returns.
|
||||
The periodicity of returns is based on the periodicity of underlying data.
|
||||
"""
|
||||
rolling_returns = self.calculate_rolling_returns(
|
||||
from_date=start_date, to_date=end_date, interval_type=self.frequency.freq_type, compounding=False
|
||||
)
|
||||
sd = statistics.stdev(rolling_returns.values)
|
||||
return sd
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
date_series = [
|
||||
|
85
test2.py
85
test2.py
@ -1,37 +1,58 @@
|
||||
# type: ignore
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
import datetime
|
||||
import time
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from fincal.fincal import TimeSeries
|
||||
from fincal.fincal import TimeSeries, create_date_series
|
||||
|
||||
df = pd.read_csv('test_files/msft.csv')
|
||||
df = df.sort_values(by='Date') # type: ignore
|
||||
data_list = [(i.Date, i.Close) for i in df.itertuples()]
|
||||
dfd = pd.read_csv("test_files/nav_history_daily - Copy.csv")
|
||||
dfd = dfd[dfd["amfi_code"] == 118825].reset_index(drop=True)
|
||||
ts = TimeSeries([(i.date, i.nav) for i in dfd.itertuples()], frequency="D")
|
||||
repr(ts)
|
||||
# print(ts[['2022-01-31', '2021-05-28']])
|
||||
|
||||
start = time.time()
|
||||
ts_data = TimeSeries(data_list, frequency='D', date_format='%d-%m-%Y')
|
||||
print(f"Instantiation took {round((time.time() - start)*1000, 2)} ms")
|
||||
# ts_data.fill_missing_days()
|
||||
start = time.time()
|
||||
# ts_data.calculate_returns(as_on=datetime.datetime(2022, 1, 4), closest='next', years=1)
|
||||
rr = ts_data.calculate_rolling_returns(datetime.datetime(1994, 1, 1),
|
||||
datetime.datetime(2022, 2, 17),
|
||||
frequency='D',
|
||||
as_on_match='next',
|
||||
prior_match='previous',
|
||||
closest='previous',
|
||||
years=1)
|
||||
# rr = ts.calculate_rolling_returns(from_date='2021-01-01', to_date='2022-01-01', frequency='D', interval_type='days', interval_value=30, compounding=False)
|
||||
|
||||
# ffill_data = ts_data.bfill()
|
||||
print(f"Calculation took {round((time.time() - start)*1000, 2)} ms")
|
||||
rr.sort()
|
||||
for i in rr[:10]:
|
||||
print(i)
|
||||
# print(ffill_data)
|
||||
# print(ts_data)
|
||||
# print(repr(ts_data))
|
||||
|
||||
# data = [
|
||||
# ("2020-01-01", 10),
|
||||
# ("2020-02-01", 12),
|
||||
# ("2020-03-01", 14),
|
||||
# ("2020-04-01", 16),
|
||||
# ("2020-05-01", 18),
|
||||
# ("2020-06-01", 20),
|
||||
# ("2020-07-01", 22),
|
||||
# ("2020-08-01", 24),
|
||||
# ("2020-09-01", 26),
|
||||
# ("2020-10-01", 28),
|
||||
# ("2020-11-01", 30),
|
||||
# ("2020-12-01", 32),
|
||||
# ("2021-01-01", 34),
|
||||
# ]
|
||||
|
||||
# ts = TimeSeries(data, frequency="M")
|
||||
# rr = ts.calculate_rolling_returns(
|
||||
# "2020-02-01",
|
||||
# "2021-01-01",
|
||||
# if_not_found="nan",
|
||||
# compounding=False,
|
||||
# interval_type="months",
|
||||
# interval_value=1,
|
||||
# as_on_match="exact",
|
||||
# )
|
||||
|
||||
# for i in rr:
|
||||
# print(i)
|
||||
|
||||
# returns = ts.calculate_returns(
|
||||
# "2020-04-25",
|
||||
# return_actual_date=True,
|
||||
# closest_max_days=15,
|
||||
# compounding=True,
|
||||
# interval_type="days",
|
||||
# interval_value=90,
|
||||
# closest="previous",
|
||||
# if_not_found="fail",
|
||||
# )
|
||||
|
||||
# print(returns)
|
||||
|
||||
volatility = ts.volatility(start_date="2018-01-01", end_date="2021-01-01")
|
||||
print(volatility)
|
||||
|
Loading…
Reference in New Issue
Block a user