Added volatility function

This commit is contained in:
Gourav Kumar 2022-03-06 15:36:23 +05:30
parent 17b3e348a2
commit 24d5d253b5
2 changed files with 69 additions and 30 deletions

View File

@ -1,6 +1,7 @@
from __future__ import annotations
import datetime
import statistics
from typing import Iterable, List, Literal, Mapping, Union
from dateutil.relativedelta import relativedelta
@ -382,6 +383,23 @@ class TimeSeries(TimeSeriesCore):
rolling_returns.sort()
return self.__class__(rolling_returns, self.frequency.symbol)
def volatility(
self,
start_date: Union[str, datetime.datetime],
end_date: Union[str, datetime.datetime],
annualized: bool = True,
):
"""Calculates the volatility of the time series.add()
The volatility is calculated as the standard deviaion of periodic returns.
The periodicity of returns is based on the periodicity of underlying data.
"""
rolling_returns = self.calculate_rolling_returns(
from_date=start_date, to_date=end_date, interval_type=self.frequency.freq_type, compounding=False
)
sd = statistics.stdev(rolling_returns.values)
return sd
if __name__ == "__main__":
date_series = [

View File

@ -1,37 +1,58 @@
# type: ignore
if __name__ == "__main__":
import datetime
import time
import pandas as pd
from fincal.fincal import TimeSeries
from fincal.fincal import TimeSeries, create_date_series
df = pd.read_csv('test_files/msft.csv')
df = df.sort_values(by='Date') # type: ignore
data_list = [(i.Date, i.Close) for i in df.itertuples()]
dfd = pd.read_csv("test_files/nav_history_daily - Copy.csv")
dfd = dfd[dfd["amfi_code"] == 118825].reset_index(drop=True)
ts = TimeSeries([(i.date, i.nav) for i in dfd.itertuples()], frequency="D")
repr(ts)
# print(ts[['2022-01-31', '2021-05-28']])
start = time.time()
ts_data = TimeSeries(data_list, frequency='D', date_format='%d-%m-%Y')
print(f"Instantiation took {round((time.time() - start)*1000, 2)} ms")
# ts_data.fill_missing_days()
start = time.time()
# ts_data.calculate_returns(as_on=datetime.datetime(2022, 1, 4), closest='next', years=1)
rr = ts_data.calculate_rolling_returns(datetime.datetime(1994, 1, 1),
datetime.datetime(2022, 2, 17),
frequency='D',
as_on_match='next',
prior_match='previous',
closest='previous',
years=1)
# rr = ts.calculate_rolling_returns(from_date='2021-01-01', to_date='2022-01-01', frequency='D', interval_type='days', interval_value=30, compounding=False)
# ffill_data = ts_data.bfill()
print(f"Calculation took {round((time.time() - start)*1000, 2)} ms")
rr.sort()
for i in rr[:10]:
print(i)
# print(ffill_data)
# print(ts_data)
# print(repr(ts_data))
# data = [
# ("2020-01-01", 10),
# ("2020-02-01", 12),
# ("2020-03-01", 14),
# ("2020-04-01", 16),
# ("2020-05-01", 18),
# ("2020-06-01", 20),
# ("2020-07-01", 22),
# ("2020-08-01", 24),
# ("2020-09-01", 26),
# ("2020-10-01", 28),
# ("2020-11-01", 30),
# ("2020-12-01", 32),
# ("2021-01-01", 34),
# ]
# ts = TimeSeries(data, frequency="M")
# rr = ts.calculate_rolling_returns(
# "2020-02-01",
# "2021-01-01",
# if_not_found="nan",
# compounding=False,
# interval_type="months",
# interval_value=1,
# as_on_match="exact",
# )
# for i in rr:
# print(i)
# returns = ts.calculate_returns(
# "2020-04-25",
# return_actual_date=True,
# closest_max_days=15,
# compounding=True,
# interval_type="days",
# interval_value=90,
# closest="previous",
# if_not_found="fail",
# )
# print(returns)
volatility = ts.volatility(start_date="2018-01-01", end_date="2021-01-01")
print(volatility)