Added volatility function
This commit is contained in:
parent
17b3e348a2
commit
24d5d253b5
@ -1,6 +1,7 @@
|
|||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
import datetime
|
import datetime
|
||||||
|
import statistics
|
||||||
from typing import Iterable, List, Literal, Mapping, Union
|
from typing import Iterable, List, Literal, Mapping, Union
|
||||||
|
|
||||||
from dateutil.relativedelta import relativedelta
|
from dateutil.relativedelta import relativedelta
|
||||||
@ -382,6 +383,23 @@ class TimeSeries(TimeSeriesCore):
|
|||||||
rolling_returns.sort()
|
rolling_returns.sort()
|
||||||
return self.__class__(rolling_returns, self.frequency.symbol)
|
return self.__class__(rolling_returns, self.frequency.symbol)
|
||||||
|
|
||||||
|
def volatility(
|
||||||
|
self,
|
||||||
|
start_date: Union[str, datetime.datetime],
|
||||||
|
end_date: Union[str, datetime.datetime],
|
||||||
|
annualized: bool = True,
|
||||||
|
):
|
||||||
|
"""Calculates the volatility of the time series.add()
|
||||||
|
|
||||||
|
The volatility is calculated as the standard deviaion of periodic returns.
|
||||||
|
The periodicity of returns is based on the periodicity of underlying data.
|
||||||
|
"""
|
||||||
|
rolling_returns = self.calculate_rolling_returns(
|
||||||
|
from_date=start_date, to_date=end_date, interval_type=self.frequency.freq_type, compounding=False
|
||||||
|
)
|
||||||
|
sd = statistics.stdev(rolling_returns.values)
|
||||||
|
return sd
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
date_series = [
|
date_series = [
|
||||||
|
85
test2.py
85
test2.py
@ -1,37 +1,58 @@
|
|||||||
# type: ignore
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
|
|
||||||
import datetime
|
|
||||||
import time
|
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
from fincal.fincal import TimeSeries
|
from fincal.fincal import TimeSeries, create_date_series
|
||||||
|
|
||||||
df = pd.read_csv('test_files/msft.csv')
|
dfd = pd.read_csv("test_files/nav_history_daily - Copy.csv")
|
||||||
df = df.sort_values(by='Date') # type: ignore
|
dfd = dfd[dfd["amfi_code"] == 118825].reset_index(drop=True)
|
||||||
data_list = [(i.Date, i.Close) for i in df.itertuples()]
|
ts = TimeSeries([(i.date, i.nav) for i in dfd.itertuples()], frequency="D")
|
||||||
|
repr(ts)
|
||||||
|
# print(ts[['2022-01-31', '2021-05-28']])
|
||||||
|
|
||||||
start = time.time()
|
# rr = ts.calculate_rolling_returns(from_date='2021-01-01', to_date='2022-01-01', frequency='D', interval_type='days', interval_value=30, compounding=False)
|
||||||
ts_data = TimeSeries(data_list, frequency='D', date_format='%d-%m-%Y')
|
|
||||||
print(f"Instantiation took {round((time.time() - start)*1000, 2)} ms")
|
|
||||||
# ts_data.fill_missing_days()
|
|
||||||
start = time.time()
|
|
||||||
# ts_data.calculate_returns(as_on=datetime.datetime(2022, 1, 4), closest='next', years=1)
|
|
||||||
rr = ts_data.calculate_rolling_returns(datetime.datetime(1994, 1, 1),
|
|
||||||
datetime.datetime(2022, 2, 17),
|
|
||||||
frequency='D',
|
|
||||||
as_on_match='next',
|
|
||||||
prior_match='previous',
|
|
||||||
closest='previous',
|
|
||||||
years=1)
|
|
||||||
|
|
||||||
# ffill_data = ts_data.bfill()
|
|
||||||
print(f"Calculation took {round((time.time() - start)*1000, 2)} ms")
|
# data = [
|
||||||
rr.sort()
|
# ("2020-01-01", 10),
|
||||||
for i in rr[:10]:
|
# ("2020-02-01", 12),
|
||||||
print(i)
|
# ("2020-03-01", 14),
|
||||||
# print(ffill_data)
|
# ("2020-04-01", 16),
|
||||||
# print(ts_data)
|
# ("2020-05-01", 18),
|
||||||
# print(repr(ts_data))
|
# ("2020-06-01", 20),
|
||||||
|
# ("2020-07-01", 22),
|
||||||
|
# ("2020-08-01", 24),
|
||||||
|
# ("2020-09-01", 26),
|
||||||
|
# ("2020-10-01", 28),
|
||||||
|
# ("2020-11-01", 30),
|
||||||
|
# ("2020-12-01", 32),
|
||||||
|
# ("2021-01-01", 34),
|
||||||
|
# ]
|
||||||
|
|
||||||
|
# ts = TimeSeries(data, frequency="M")
|
||||||
|
# rr = ts.calculate_rolling_returns(
|
||||||
|
# "2020-02-01",
|
||||||
|
# "2021-01-01",
|
||||||
|
# if_not_found="nan",
|
||||||
|
# compounding=False,
|
||||||
|
# interval_type="months",
|
||||||
|
# interval_value=1,
|
||||||
|
# as_on_match="exact",
|
||||||
|
# )
|
||||||
|
|
||||||
|
# for i in rr:
|
||||||
|
# print(i)
|
||||||
|
|
||||||
|
# returns = ts.calculate_returns(
|
||||||
|
# "2020-04-25",
|
||||||
|
# return_actual_date=True,
|
||||||
|
# closest_max_days=15,
|
||||||
|
# compounding=True,
|
||||||
|
# interval_type="days",
|
||||||
|
# interval_value=90,
|
||||||
|
# closest="previous",
|
||||||
|
# if_not_found="fail",
|
||||||
|
# )
|
||||||
|
|
||||||
|
# print(returns)
|
||||||
|
|
||||||
|
volatility = ts.volatility(start_date="2018-01-01", end_date="2021-01-01")
|
||||||
|
print(volatility)
|
||||||
|
Loading…
Reference in New Issue
Block a user