diff --git a/fincal/fincal.py b/fincal/fincal.py index da830e6..ee7bf11 100644 --- a/fincal/fincal.py +++ b/fincal/fincal.py @@ -3,7 +3,7 @@ from __future__ import annotations import datetime import math import statistics -from typing import Iterable, List, Literal, Mapping, Union +from typing import Iterable, List, Literal, Mapping, TypedDict, Union from dateutil.relativedelta import relativedelta @@ -16,6 +16,12 @@ from .utils import ( ) +class MaxDrawdown(TypedDict): + start_date: datetime.datetime + end_date: datetime.datetime + drawdown: float + + @date_parser(0, 1) def create_date_series( start_date: Union[str, datetime.datetime], @@ -115,11 +121,11 @@ class TimeSeries(TimeSeriesCore): super().__init__(data, frequency, date_format) - def info(self): + def info(self) -> str: """Summary info about the TimeSeries object""" - total_dates = len(self.data.keys()) - res_string = "First date: {}\nLast date: {}\nNumber of rows: {}" + total_dates: int = len(self.data.keys()) + res_string: str = "First date: {}\nLast date: {}\nNumber of rows: {}" return res_string.format(self.start_date, self.end_date, total_dates) def ffill(self, inplace: bool = False, limit: int = None) -> Union[TimeSeries, None]: @@ -138,7 +144,7 @@ class TimeSeries(TimeSeriesCore): Returns a TimeSeries object if inplace is False, otherwise None """ - eomonth = True if self.frequency.days >= AllFrequencies.M.days else False + eomonth: bool = True if self.frequency.days >= AllFrequencies.M.days else False dates_to_fill = create_date_series(self.start_date, self.end_date, self.frequency.symbol, eomonth) new_ts = dict() @@ -171,7 +177,7 @@ class TimeSeries(TimeSeriesCore): Returns a TimeSeries object if inplace is False, otherwise None """ - eomonth = True if self.frequency.days >= AllFrequencies.M.days else False + eomonth: bool = True if self.frequency.days >= AllFrequencies.M.days else False dates_to_fill = create_date_series(self.start_date, self.end_date, self.frequency.symbol, eomonth) dates_to_fill.append(self.end_date) @@ -517,21 +523,31 @@ class TimeSeries(TimeSeriesCore): rr = self.calculate_rolling_returns(**kwargs) return statistics.mean(rr.values) - def max_drawdown(self): - max_val_dict = {} + def max_drawdown(self) -> MaxDrawdown: + """Calculates the maximum fall the stock has taken between any two points. - prev_val = 0 - prev_date = list(self.data)[0] + Returns + ------- + MaxDrawdown + Returns the start_date, end_date, and the drawdown value in decimal. + """ + + drawdowns: dict = dict() + + prev_val: float = 0 + prev_date: datetime.datetime = list(self.data)[0] for dt, val in self.data.items(): if val > prev_val: - max_val_dict[dt] = (dt, val, 0) + drawdowns[dt] = (dt, val, 0) prev_date, prev_val = dt, val else: - max_val_dict[dt] = (prev_date, prev_val, val / prev_val - 1) + drawdowns[dt] = (prev_date, prev_val, val / prev_val - 1) - max_drawdown = min(max_val_dict.items(), key=lambda x: x[1][2]) - max_drawdown = dict(start_date=max_drawdown[1][0], end_date=max_drawdown[0], drawdown=max_drawdown[1][2]) + max_drawdown = min(drawdowns.items(), key=lambda x: x[1][2]) + max_drawdown: MaxDrawdown = dict( + start_date=max_drawdown[1][0], end_date=max_drawdown[0], drawdown=max_drawdown[1][2] + ) return max_drawdown