diff --git a/fincal/core.py b/fincal/core.py index 4ee576d..a13ea9c 100644 --- a/fincal/core.py +++ b/fincal/core.py @@ -7,7 +7,6 @@ from collections import UserList from dataclasses import dataclass from numbers import Number from typing import Any, Callable, Iterable, List, Literal, Mapping, Sequence, Type -from unittest import skip from dateutil.relativedelta import relativedelta diff --git a/fincal/statistics.py b/fincal/statistics.py index ca85989..6eeda7c 100644 --- a/fincal/statistics.py +++ b/fincal/statistics.py @@ -1,9 +1,11 @@ import datetime +import statistics from typing import Literal from fincal.core import date_parser from .fincal import TimeSeries +from .utils import _interval_to_years @date_parser(3, 4) @@ -21,6 +23,13 @@ def sharpe_ratio( closest: Literal["previous", "next"] = "previous", date_format: str = None, ): + interval_days = int(_interval_to_years(return_period_unit, return_period_value) * 365 + 1) + + if from_date is None: + from_date = time_series_data.start_date + datetime.timedelta(days=interval_days) + if to_date is None: + to_date = time_series_data.end_date + if risk_free_data is None and risk_free_rate is None: raise ValueError("At least one of risk_free_data or risk_free rate is required") elif risk_free_data is not None: @@ -47,3 +56,47 @@ def sharpe_ratio( sharpe_ratio_value = excess_returns / sd return sharpe_ratio_value + + +@date_parser(2, 3) +def beta( + asset_data: TimeSeries, + market_data: TimeSeries, + from_date: str | datetime.datetime = None, + to_date: str | datetime.datetime = None, + frequency: Literal["D", "W", "M", "Q", "H", "Y"] = None, + return_period_unit: Literal["years", "months", "days"] = "years", + return_period_value: int = 1, + as_on_match: str = "closest", + prior_match: str = "closest", + closest: Literal["previous", "next"] = "previous", + date_format: str = None, +): + + interval_days = int(_interval_to_years(return_period_unit, return_period_value) * 365 + 1) + + if from_date is None: + from_date = asset_data.start_date + datetime.timedelta(days=interval_days) + if to_date is None: + to_date = asset_data.end_date + + common_params = { + "from_date": from_date, + "to_date": to_date, + "frequency": frequency, + "return_period_unit": return_period_unit, + "return_period_value": return_period_value, + "as_on_match": as_on_match, + "prior_match": prior_match, + "closest": closest, + "date_format": date_format, + } + + asset_rr = asset_data.calculate_rolling_returns(**common_params) + market_rr = market_data.calculate_rolling_returns(**common_params) + + cov = statistics.covariance(asset_rr.values, market_rr.values) + market_var = statistics.variance(market_rr.values) + + beta = cov / market_var + return beta