Sharpe ratio is working
This commit is contained in:
parent
2a8f5b4041
commit
0d0b2121a3
@ -449,7 +449,7 @@ class TimeSeries(TimeSeriesCore):
|
||||
prior_match: str = "closest",
|
||||
closest: Literal["previous", "next", "exact"] = "previous",
|
||||
if_not_found: Literal["fail", "nan"] = "fail",
|
||||
annual_compounded_returns: bool = False,
|
||||
annual_compounded_returns: bool = None,
|
||||
date_format: str = None,
|
||||
) -> float:
|
||||
"""Calculates the volatility of the time series.add()
|
||||
@ -503,6 +503,12 @@ class TimeSeries(TimeSeriesCore):
|
||||
from_date = self.start_date + relativedelta(**{return_period_unit: return_period_value})
|
||||
if to_date is None:
|
||||
to_date = self.end_date
|
||||
years = _interval_to_years(return_period_unit, return_period_value)
|
||||
if annual_compounded_returns is None:
|
||||
if years > 1:
|
||||
annual_compounded_returns = True
|
||||
else:
|
||||
annual_compounded_returns = False
|
||||
|
||||
rolling_returns = self.calculate_rolling_returns(
|
||||
from_date=from_date,
|
||||
@ -524,7 +530,7 @@ class TimeSeries(TimeSeriesCore):
|
||||
if return_period_unit == "months":
|
||||
sd *= math.sqrt(12)
|
||||
elif return_period_unit == "days":
|
||||
sd *= math.sqrt(traded_days)
|
||||
sd *= math.sqrt(traded_days / return_period_value)
|
||||
|
||||
return sd
|
||||
|
||||
@ -544,19 +550,32 @@ class TimeSeries(TimeSeriesCore):
|
||||
---------
|
||||
TimeSeries.calculate_rolling_returns()
|
||||
"""
|
||||
|
||||
kwargs["return_period_unit"] = kwargs.get("return_period_unit", self.frequency.freq_type)
|
||||
kwargs["return_period_value"] = kwargs.get("return_period_value", 1)
|
||||
kwargs["to_date"] = kwargs.get("to_date", self.end_date)
|
||||
|
||||
if kwargs.get("from_date", None) is None:
|
||||
start_date = self.start_date + relativedelta(
|
||||
years = _interval_to_years(kwargs["return_period_unit"], kwargs["return_period_value"])
|
||||
if kwargs.get("annual_compounded_returns", True):
|
||||
if years >= 1:
|
||||
kwargs["annual_compounded_returns"] = True
|
||||
annualise_returns = False
|
||||
else:
|
||||
kwargs["annual_compounded_returns"] = False
|
||||
annualise_returns = True
|
||||
elif not kwargs["annual_compounded_returns"]:
|
||||
annualise_returns = False
|
||||
|
||||
if kwargs.get("from_date") is None:
|
||||
kwargs["from_date"] = self.start_date + relativedelta(
|
||||
**{kwargs["return_period_unit"]: kwargs["return_period_value"]}
|
||||
)
|
||||
kwargs["from_date"] = start_date
|
||||
kwargs["to_date"] = kwargs.get("to_date", self.end_date)
|
||||
|
||||
rr = self.calculate_rolling_returns(**kwargs)
|
||||
return statistics.mean(rr.values)
|
||||
mean_rr = statistics.mean(rr.values)
|
||||
if annualise_returns:
|
||||
mean_rr = (1 + mean_rr) ** (1 / years) - 1
|
||||
|
||||
return mean_rr
|
||||
|
||||
def max_drawdown(self) -> MaxDrawdown:
|
||||
"""Calculates the maximum fall the stock has taken between any two points.
|
||||
|
@ -21,10 +21,10 @@ def sharpe_ratio(
|
||||
closest: Literal["previous", "next"] = "previous",
|
||||
date_format: str = None,
|
||||
):
|
||||
pass
|
||||
|
||||
if risk_free_data is None and risk_free_rate is None:
|
||||
raise ValueError("At least one of risk_free_data or risk_free rate is required")
|
||||
elif risk_free_data is not None:
|
||||
risk_free_rate = risk_free_data.mean()
|
||||
|
||||
common_params = {
|
||||
"from_date": from_date,
|
||||
@ -37,18 +37,13 @@ def sharpe_ratio(
|
||||
"closest": closest,
|
||||
"date_format": date_format,
|
||||
}
|
||||
returns_ts = time_series_data.calculate_rolling_returns(**common_params, annual_compounded_returns=True)
|
||||
average_rr = time_series_data.average_rolling_return(**common_params, annual_compounded_returns=True)
|
||||
|
||||
if risk_free_data is not None:
|
||||
risk_free_data = returns_ts.sync(risk_free_data)
|
||||
else:
|
||||
risk_free_data = risk_free_rate
|
||||
|
||||
excess_returns = returns_ts - risk_free_data
|
||||
excess_returns = average_rr - risk_free_rate
|
||||
sd = time_series_data.volatility(
|
||||
**common_params,
|
||||
annualize_volatility=True,
|
||||
)
|
||||
|
||||
sharpe_ratio = excess_returns.mean() / sd
|
||||
return sharpe_ratio
|
||||
sharpe_ratio_value = excess_returns / sd
|
||||
return sharpe_ratio_value
|
||||
|
@ -206,6 +206,8 @@ class TestTimeSeriesCreation:
|
||||
|
||||
|
||||
class TestTimeSeriesBasics:
|
||||
FincalOptions.get_closest = "exact"
|
||||
|
||||
def test_fill(self):
|
||||
ts_data = create_test_data(frequency=AllFrequencies.D, num=50, skip_weekends=True)
|
||||
ts = TimeSeries(ts_data, frequency="D")
|
||||
|
Loading…
Reference in New Issue
Block a user