completed transform function

This commit is contained in:
Gourav Kumar 2022-05-24 21:11:34 +05:30
parent 9a71cdf355
commit 0a113fdd8a

View File

@ -784,7 +784,7 @@ class TimeSeries(TimeSeriesCore):
return statistics.mean(self.values)
def transform(
self, to_frequency: Literal["W", "M", "Q", "H", "Y"], method: Literal["sum", "mean"], eomonth: bool
self, to_frequency: Literal["W", "M", "Q", "H", "Y"], method: Literal["sum", "mean"], eomonth: bool = False
) -> TimeSeries:
"""Transform a time series object into a lower frequency object with an aggregation function.
@ -822,6 +822,28 @@ class TimeSeries(TimeSeriesCore):
if method not in ["sum", "mean"]:
raise ValueError(f"Method not recognised: {method}")
dates = create_date_series(
self.start_date,
self.end_date
+ datetime.timedelta(to_frequency.days), # need extra date at the end for calculation of last value
to_frequency.symbol,
ensure_coverage=True,
)
prev_date = dates[0]
new_ts_dict = {}
for date in dates[1:]:
cur_data = self[(self.dates >= prev_date) & (self.dates < date)]
if method == "sum":
value = sum(cur_data.values)
elif method == "mean":
value = cur_data.mean()
new_ts_dict.update({prev_date: value})
prev_date = date
return self.__class__(new_ts_dict, to_frequency.symbol)
def _preprocess_csv(file_path: str | pathlib.Path, delimiter: str = ",", encoding: str = "utf-8") -> List[list]:
"""Preprocess csv data"""