PyFacts/test2.py

59 lines
1.4 KiB
Python
Raw Normal View History

2022-03-06 10:06:23 +00:00
import pandas as pd
from fincal.fincal import TimeSeries, create_date_series
dfd = pd.read_csv("test_files/nav_history_daily - Copy.csv")
dfd = dfd[dfd["amfi_code"] == 118825].reset_index(drop=True)
ts = TimeSeries([(i.date, i.nav) for i in dfd.itertuples()], frequency="D")
repr(ts)
# print(ts[['2022-01-31', '2021-05-28']])
# rr = ts.calculate_rolling_returns(from_date='2021-01-01', to_date='2022-01-01', frequency='D', interval_type='days', interval_value=30, compounding=False)
# data = [
# ("2020-01-01", 10),
# ("2020-02-01", 12),
# ("2020-03-01", 14),
# ("2020-04-01", 16),
# ("2020-05-01", 18),
# ("2020-06-01", 20),
# ("2020-07-01", 22),
# ("2020-08-01", 24),
# ("2020-09-01", 26),
# ("2020-10-01", 28),
# ("2020-11-01", 30),
# ("2020-12-01", 32),
# ("2021-01-01", 34),
# ]
# ts = TimeSeries(data, frequency="M")
# rr = ts.calculate_rolling_returns(
# "2020-02-01",
# "2021-01-01",
# if_not_found="nan",
# compounding=False,
# interval_type="months",
# interval_value=1,
# as_on_match="exact",
# )
# for i in rr:
# print(i)
# returns = ts.calculate_returns(
# "2020-04-25",
# return_actual_date=True,
# closest_max_days=15,
# compounding=True,
# interval_type="days",
# interval_value=90,
# closest="previous",
# if_not_found="fail",
# )
# print(returns)
volatility = ts.volatility(start_date="2018-01-01", end_date="2021-01-01")
print(volatility)