PyFacts/fincal/statistics.py

160 lines
4.8 KiB
Python
Raw Normal View History

2022-04-30 07:18:31 +00:00
import datetime
import statistics
2022-04-30 07:18:31 +00:00
from typing import Literal
from fincal.core import date_parser
2022-04-29 02:13:06 +00:00
from .fincal import TimeSeries
from .utils import _interval_to_years
2022-04-29 02:13:06 +00:00
2022-04-30 07:18:31 +00:00
@date_parser(3, 4)
2022-04-29 02:13:06 +00:00
def sharpe_ratio(
2022-04-30 07:18:31 +00:00
time_series_data: TimeSeries,
risk_free_data: TimeSeries = None,
risk_free_rate: float = None,
from_date: str | datetime.datetime = None,
to_date: str | datetime.datetime = None,
frequency: Literal["D", "W", "M", "Q", "H", "Y"] = None,
return_period_unit: Literal["years", "months", "days"] = "years",
return_period_value: int = 1,
as_on_match: str = "closest",
prior_match: str = "closest",
closest: Literal["previous", "next"] = "previous",
date_format: str = None,
2022-04-29 02:13:06 +00:00
):
2022-05-31 15:48:55 +00:00
"""Calculate the Sharpe ratio of any time series
2022-06-04 10:05:16 +00:00
Sharpe ratio is a measure of returns per unit of risk,
where risk is measured by the standard deviation of the returns.
2022-05-31 15:48:55 +00:00
Parameters
----------
2022-06-04 10:05:16 +00:00
time_series_data:
The time series for which Sharpe ratio needs to be calculated
2022-05-31 15:48:55 +00:00
2022-06-04 10:05:16 +00:00
risk_free_data:
Risk free rates as time series data.
This should be the time series of risk free returns,
and not the underlying asset value.
2022-05-31 15:48:55 +00:00
2022-06-04 10:05:16 +00:00
risk_free_rate:
Risk free rate to be used.
Either risk_free_data or risk_free_rate needs to be provided.
If both are provided, the time series data will be used.
2022-05-31 15:48:55 +00:00
2022-06-04 10:05:16 +00:00
from_date:
Start date from which returns should be calculated.
Defaults to the first date of the series.
2022-05-31 15:48:55 +00:00
2022-06-04 10:05:16 +00:00
to_date:
End date till which returns should be calculated.
Defaults to the last date of the series.
2022-05-31 15:48:55 +00:00
2022-06-04 10:05:16 +00:00
frequency:
The frequency at which returns should be calculated.
2022-05-31 15:48:55 +00:00
2022-06-04 10:05:16 +00:00
return_period_unit : 'years', 'months', 'days'
The type of time period to use for return calculation.
2022-05-31 15:48:55 +00:00
2022-06-04 10:05:16 +00:00
return_period_value : int
The value of the specified interval type over which returns needs to be calculated.
2022-05-31 15:48:55 +00:00
2022-06-04 10:05:16 +00:00
as_on_match:
2022-05-31 15:48:55 +00:00
prior_match :
closest :
date_format :
Returns
-------
_description_
Raises
------
ValueError
_description_
"""
interval_days = int(_interval_to_years(return_period_unit, return_period_value) * 365 + 1)
if from_date is None:
from_date = time_series_data.start_date + datetime.timedelta(days=interval_days)
if to_date is None:
to_date = time_series_data.end_date
2022-04-29 02:13:06 +00:00
if risk_free_data is None and risk_free_rate is None:
raise ValueError("At least one of risk_free_data or risk_free rate is required")
2022-05-07 08:39:21 +00:00
elif risk_free_data is not None:
risk_free_rate = risk_free_data.mean()
2022-04-29 02:13:06 +00:00
2022-04-30 07:18:31 +00:00
common_params = {
"from_date": from_date,
"to_date": to_date,
"frequency": frequency,
"return_period_unit": return_period_unit,
"return_period_value": return_period_value,
"as_on_match": as_on_match,
"prior_match": prior_match,
"closest": closest,
"date_format": date_format,
}
2022-05-07 08:39:21 +00:00
average_rr = time_series_data.average_rolling_return(**common_params, annual_compounded_returns=True)
2022-04-29 02:13:06 +00:00
2022-05-07 08:39:21 +00:00
excess_returns = average_rr - risk_free_rate
2022-04-30 07:18:31 +00:00
sd = time_series_data.volatility(
**common_params,
annualize_volatility=True,
)
2022-05-07 08:39:21 +00:00
sharpe_ratio_value = excess_returns / sd
return sharpe_ratio_value
@date_parser(2, 3)
def beta(
asset_data: TimeSeries,
market_data: TimeSeries,
from_date: str | datetime.datetime = None,
to_date: str | datetime.datetime = None,
frequency: Literal["D", "W", "M", "Q", "H", "Y"] = None,
return_period_unit: Literal["years", "months", "days"] = "years",
return_period_value: int = 1,
as_on_match: str = "closest",
prior_match: str = "closest",
closest: Literal["previous", "next"] = "previous",
date_format: str = None,
):
2022-05-31 15:48:55 +00:00
interval_years = _interval_to_years(return_period_unit, return_period_value)
interval_days = int(interval_years * 365 + 1)
2022-05-31 15:48:55 +00:00
annual_compounded_returns = True if interval_years > 1 else False
if from_date is None:
from_date = asset_data.start_date + datetime.timedelta(days=interval_days)
if to_date is None:
to_date = asset_data.end_date
common_params = {
"from_date": from_date,
"to_date": to_date,
"frequency": frequency,
"return_period_unit": return_period_unit,
"return_period_value": return_period_value,
"as_on_match": as_on_match,
"prior_match": prior_match,
"closest": closest,
"date_format": date_format,
2022-05-31 15:48:55 +00:00
"annual_compounded_returns": annual_compounded_returns,
}
asset_rr = asset_data.calculate_rolling_returns(**common_params)
market_rr = market_data.calculate_rolling_returns(**common_params)
cov = statistics.covariance(asset_rr.values, market_rr.values)
market_var = statistics.variance(market_rr.values)
beta = cov / market_var
return beta