PyFacts/fincal/statistics.py

50 lines
1.6 KiB
Python
Raw Normal View History

2022-04-30 07:18:31 +00:00
import datetime
from typing import Literal
from fincal.core import date_parser
2022-04-29 02:13:06 +00:00
from .fincal import TimeSeries
2022-04-30 07:18:31 +00:00
@date_parser(3, 4)
2022-04-29 02:13:06 +00:00
def sharpe_ratio(
2022-04-30 07:18:31 +00:00
time_series_data: TimeSeries,
risk_free_data: TimeSeries = None,
risk_free_rate: float = None,
from_date: str | datetime.datetime = None,
to_date: str | datetime.datetime = None,
frequency: Literal["D", "W", "M", "Q", "H", "Y"] = None,
return_period_unit: Literal["years", "months", "days"] = "years",
return_period_value: int = 1,
as_on_match: str = "closest",
prior_match: str = "closest",
closest: Literal["previous", "next"] = "previous",
date_format: str = None,
2022-04-29 02:13:06 +00:00
):
if risk_free_data is None and risk_free_rate is None:
raise ValueError("At least one of risk_free_data or risk_free rate is required")
2022-05-07 08:39:21 +00:00
elif risk_free_data is not None:
risk_free_rate = risk_free_data.mean()
2022-04-29 02:13:06 +00:00
2022-04-30 07:18:31 +00:00
common_params = {
"from_date": from_date,
"to_date": to_date,
"frequency": frequency,
"return_period_unit": return_period_unit,
"return_period_value": return_period_value,
"as_on_match": as_on_match,
"prior_match": prior_match,
"closest": closest,
"date_format": date_format,
}
2022-05-07 08:39:21 +00:00
average_rr = time_series_data.average_rolling_return(**common_params, annual_compounded_returns=True)
2022-04-29 02:13:06 +00:00
2022-05-07 08:39:21 +00:00
excess_returns = average_rr - risk_free_rate
2022-04-30 07:18:31 +00:00
sd = time_series_data.volatility(
**common_params,
annualize_volatility=True,
)
2022-05-07 08:39:21 +00:00
sharpe_ratio_value = excess_returns / sd
return sharpe_ratio_value