30 lines
643 B
Python
30 lines
643 B
Python
|
import pandas
|
||
|
|
||
|
from fincal.fincal import TimeSeries
|
||
|
|
||
|
dfd = pandas.read_csv('test_files/nav_history_daily - Copy.csv')
|
||
|
dfm = pandas.read_csv('test_files/nav_history_monthly.csv')
|
||
|
|
||
|
data_d = [(i.date, i.nav) for i in dfd.itertuples() if i.amfi_code == 118825]
|
||
|
data_d.sort()
|
||
|
data_m = [{'date': i.date, 'value': i.nav} for i in dfm.itertuples()]
|
||
|
|
||
|
tsd = TimeSeries(data_d, frequency='D')
|
||
|
|
||
|
md = dict(data_d)
|
||
|
counter = 1
|
||
|
for i in iter(md):
|
||
|
print(i)
|
||
|
counter += 1
|
||
|
if counter >= 5: break
|
||
|
|
||
|
print('\n')
|
||
|
counter = 1
|
||
|
for i in reversed(md):
|
||
|
print('rev', i)
|
||
|
counter += 1
|
||
|
if counter >= 5: break
|
||
|
|
||
|
x = [next(i) for i in iter(md)]
|
||
|
print(x)
|