PyFacts/tests/test_fincal2.py

211 lines
7.7 KiB
Python
Raw Permalink Normal View History

2022-03-11 04:10:37 +00:00
import datetime
import math
import random
2022-03-15 19:05:36 +00:00
from unittest import skip
2022-03-11 04:10:37 +00:00
import pytest
from dateutil.relativedelta import relativedelta
from fincal.core import AllFrequencies, Frequency
2022-03-11 04:10:37 +00:00
from fincal.exceptions import DateNotFoundError
2022-03-15 19:05:36 +00:00
from fincal.fincal import MaxDrawdown, TimeSeries, create_date_series
2022-03-11 04:10:37 +00:00
from fincal.utils import FincalOptions
def create_prices(s0: float, mu: float, sigma: float, num_prices: int) -> list:
"""Generates a price following a geometric brownian motion process based on the input of the arguments.
Since this function is used only to generate data for tests, the seed is fixed as 1234.
Many of the tests rely on exact values generated using this seed.
If the seed is changed, those tests will fail.
Parameters:
------------
s0: float
Asset inital price.
mu: float
Interest rate expressed annual terms.
sigma: float
Volatility expressed annual terms.
num_prices: int
number of prices to generate
Returns:
--------
Returns a list of values generated using GBM algorithm
2022-03-11 04:10:37 +00:00
"""
random.seed(1234) # WARNING! Changing the seed will cause most tests to fail
all_values = []
for _ in range(num_prices):
s0 *= math.exp(
(mu - 0.5 * sigma**2) * (1.0 / 365.0) + sigma * math.sqrt(1.0 / 365.0) * random.gauss(mu=0, sigma=1)
)
all_values.append(round(s0, 2))
return all_values
def create_test_timeseries(
frequency: Frequency, num: int = 1000, skip_weekends: bool = False, mu: float = 0.1, sigma: float = 0.05
) -> TimeSeries:
"""Creates TimeSeries data
Parameters:
-----------
frequency: Frequency
The frequency of the time series data to be generated.
num: int
Number of date: value pairs to be generated.
2022-03-11 04:10:37 +00:00
skip_weekends: bool
Whether weekends (saturday, sunday) should be skipped.
Gets used only if the frequency is daily.
mu: float
Mean return for the values.
sigma: float
standard deviation of the values.
Returns:
--------
Returns a TimeSeries object
"""
start_date = datetime.datetime(2017, 1, 1)
timedelta_dict = {
2022-03-15 19:05:36 +00:00
frequency.freq_type: int(
frequency.value * num * (7 / 5 if frequency == AllFrequencies.D and skip_weekends else 1)
)
}
end_date = start_date + relativedelta(**timedelta_dict)
dates = create_date_series(start_date, end_date, frequency.symbol, skip_weekends=skip_weekends)
values = create_prices(1000, mu, sigma, num)
ts = TimeSeries(dict(zip(dates, values)), frequency=frequency.symbol)
2022-03-11 04:10:37 +00:00
return ts
class TestReturns:
def test_returns_calc(self):
2022-03-15 19:05:36 +00:00
ts = create_test_timeseries(AllFrequencies.D, skip_weekends=True)
2022-03-11 04:10:37 +00:00
returns = ts.calculate_returns(
"2020-01-01", annual_compounded_returns=False, return_period_unit="years", return_period_value=1
2022-03-11 04:10:37 +00:00
)
assert round(returns[1], 6) == 0.112913
returns = ts.calculate_returns(
"2020-04-01", annual_compounded_returns=False, return_period_unit="months", return_period_value=3
2022-03-11 04:10:37 +00:00
)
assert round(returns[1], 6) == 0.015908
returns = ts.calculate_returns(
"2020-04-01", annual_compounded_returns=True, return_period_unit="months", return_period_value=3
2022-03-11 04:10:37 +00:00
)
assert round(returns[1], 6) == 0.065167
returns = ts.calculate_returns(
"2020-04-01", annual_compounded_returns=False, return_period_unit="days", return_period_value=90
2022-03-11 04:10:37 +00:00
)
assert round(returns[1], 6) == 0.017673
returns = ts.calculate_returns(
"2020-04-01", annual_compounded_returns=True, return_period_unit="days", return_period_value=90
2022-03-11 04:10:37 +00:00
)
assert round(returns[1], 6) == 0.073632
with pytest.raises(DateNotFoundError):
ts.calculate_returns("2020-04-04", return_period_unit="days", return_period_value=90, as_on_match="exact")
2022-03-11 04:10:37 +00:00
with pytest.raises(DateNotFoundError):
ts.calculate_returns("2020-04-04", return_period_unit="months", return_period_value=3, prior_match="exact")
2022-03-11 04:10:37 +00:00
def test_date_formats(self):
2022-03-15 19:05:36 +00:00
ts = create_test_timeseries(AllFrequencies.D, skip_weekends=True)
2022-03-11 04:10:37 +00:00
FincalOptions.date_format = "%d-%m-%Y"
with pytest.raises(ValueError):
ts.calculate_returns(
"2020-04-10", annual_compounded_returns=True, return_period_unit="days", return_period_value=90
)
2022-03-11 04:10:37 +00:00
returns1 = ts.calculate_returns(
"2020-04-01", return_period_unit="days", return_period_value=90, date_format="%Y-%m-%d"
)
returns2 = ts.calculate_returns("01-04-2020", return_period_unit="days", return_period_value=90)
2022-03-11 04:10:37 +00:00
assert round(returns1[1], 6) == round(returns2[1], 6) == 0.073632
FincalOptions.date_format = "%m-%d-%Y"
with pytest.raises(ValueError):
ts.calculate_returns(
"2020-04-01", annual_compounded_returns=True, return_period_unit="days", return_period_value=90
)
2022-03-11 04:10:37 +00:00
returns1 = ts.calculate_returns(
"2020-04-01", return_period_unit="days", return_period_value=90, date_format="%Y-%m-%d"
)
returns2 = ts.calculate_returns("04-01-2020", return_period_unit="days", return_period_value=90)
2022-03-11 04:10:37 +00:00
assert round(returns1[1], 6) == round(returns2[1], 6) == 0.073632
def test_limits(self):
FincalOptions.date_format = "%Y-%m-%d"
2022-03-15 19:05:36 +00:00
ts = create_test_timeseries(AllFrequencies.D)
2022-03-11 04:10:37 +00:00
with pytest.raises(DateNotFoundError):
ts.calculate_returns("2020-11-25", return_period_unit="days", return_period_value=90, closest_max_days=10)
class TestVolatility:
def test_daily_ts(self):
ts = create_test_timeseries(AllFrequencies.D)
assert len(ts) == 1000
sd = ts.volatility(annualize_volatility=False)
assert round(sd, 6) == 0.002622
sd = ts.volatility()
assert round(sd, 6) == 0.050098
sd = ts.volatility(annual_compounded_returns=True)
assert round(sd, 4) == 37.9329
sd = ts.volatility(return_period_unit="months", annual_compounded_returns=True)
assert round(sd, 4) == 0.6778
sd = ts.volatility(return_period_unit="years")
assert round(sd, 6) == 0.023164
sd = ts.volatility(from_date="2017-10-01", to_date="2019-08-31", annualize_volatility=True)
assert round(sd, 6) == 0.050559
2022-03-13 17:22:41 +00:00
sd = ts.volatility(from_date="2017-02-01", frequency="M", return_period_unit="months")
assert round(sd, 6) == 0.050884
sd = ts.volatility(
frequency="M",
return_period_unit="months",
return_period_value=3,
annualize_volatility=False,
)
assert round(sd, 6) == 0.020547
2022-03-15 19:05:36 +00:00
class TestDrawdown:
def test_daily_ts(self):
ts = create_test_timeseries(AllFrequencies.D, skip_weekends=True)
mdd = ts.max_drawdown()
assert isinstance(mdd, dict)
assert len(mdd) == 3
assert all(i in mdd for i in ["start_date", "end_date", "drawdown"])
expeced_response = {
"start_date": datetime.datetime(2017, 6, 6, 0, 0),
"end_date": datetime.datetime(2017, 7, 31, 0, 0),
"drawdown": -0.028293686030751997,
}
assert mdd == expeced_response
def test_weekly_ts(self):
ts = create_test_timeseries(AllFrequencies.W, mu=1, sigma=0.5)
mdd = ts.max_drawdown()
assert isinstance(mdd, dict)
assert len(mdd) == 3
assert all(i in mdd for i in ["start_date", "end_date", "drawdown"])
expeced_response = {
"start_date": datetime.datetime(2019, 2, 17, 0, 0),
"end_date": datetime.datetime(2019, 11, 17, 0, 0),
"drawdown": -0.2584760499552089,
}
assert mdd == expeced_response